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ABSTRACT 
 

In this study, a red macroalgae species, Palisada perforate (Bory) K.W.Nam, was processed as a supplement total mixed 

ration (TMR), which was used to evaluate the nutrient digestibility, nitrogen balance, and rumen fermentation 

characteristics of goat. For this purpose, the impact of different levels of P. perforate (Bory) K.W.Nam supplementation 

were compared: P. perforate (Bory) K.W.Nam supplements at 0.0, 2.5 and 5.0% organic matter (OM). Twelve Kacang 

goats (body weight 16.85-31.80kg) were used in this study and grouped in a complete randomized block design with 

three treatments and four replications. The results showed that nutrient intake and digestibility (except crude protein) 

increased (P<0.05) with P. perforate (Bory) K.W.Nam supplementation at 2.5-5.0% OM. Adding 5.0% OM P. perforate 

(Bory) K.W.Nam on the basal diet also increased (P<0.05) nitrogen balance. Supplementing that seaweed at 5.0% OM 

increased (P<0.01) total VFA production, propionate proportion, and microbial protein synthesis. That treatment also 

decreased (P<0.01) acetate proportion followed by acetate propionate ratio, and methane calculation without affecting 

NH3 concentration and pH value still in normal range. It is concluded that the total mixed ration supplemented with P. 

perforate (Bory) K.W.Nam 5.0% OM resulted in the highest nutrient intake and digestibility, nitrogen balance, VFA 

total, propionate proportion, and microbial synthesis protein. This treatment also resulted in the lowest acetate 

proportion, acetate propionate ratio, and methane prediction but did not affect NH3. This combination has the potential 

to increase ruminant productivity. 
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INTRODUCTION 

 

 Macroalgae, also called seaweed, are marine 

autotrophic organisms that are classified into three 

categories based on pigmentation: brown seaweed 

(Phaeophyta), red seaweed (Rhodophyta) and green 

seaweed (Chlorophyta) (Min et al. 2021). Dini (2023) 

stated that seaweed generates nutrients like protein, 

carbohydrates, etc. as well as non-nutritive molecules such 

as dietary fibers and secondary metabolites that can 

enhance their physiological processes. Seaweeds are rich in 

minerals because of their ability to take in inorganic 

materials from their environment, they are rich in 

polysaccharides but only contain trace amounts of lipids, 

primarily polyunsaturated fatty acids (PUFAs) (Morais et 

al. 2020). Compounds from seaweed that have 

antibacterial, antiviral, antioxidant and anti-inflammatory 

properties include polysaccharides, fatty acids, peptides, 

terpenoids, pigments, and polyphenols (Min et al. 2021). 

Seaweed's composition is highly variable and is influenced 

by various factors such as species, habitat, length of 

collection, light intensity, and nutrient concentration in the 

water (Misurcova 2011). Dominguez (2013) revealed that 

genetics (species) and environment (e.g., location, nutrient 

abundance, salinity, and light) affect the seaweed 

metabolite composition diversity. These compositions have 

been proven to have an anti methanogenic, antiparasitic, 

and antioxidant properties, which are responsible for 

increasing the health and productivity of livestock (Pereira 

2018; Angulo et al. 2020; McGurrin et al. 2023).  

Morais et al. (2020) stated that green and red seaweed 

generally have higher nutrient value than brown seaweed, 

and red seaweed has abundant protein content (El-Beltagi 

et   al.   2022).  The   largest   varieties   of   seaweed   most 

commonly found are green and red seaweed, while brown 

seaweed is mostly found in cold and warm temperatures 

(Kasanah et al. 2022). Indonesia is a tropical nation with the 

highest  species  diversity  in  the  world (Erniati et al. 2016)  
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and the second-largest seaweed production rate in the world 

(38.7%) after China (47.9%) (FAO, 2018). Many 

Indonesian seaweed species are still unexplored, especially 

as ruminant feed (ingredient and or additive). Eight species 

of tropical seaweeds from coastal areas in Gunungkidul 

District, Yogyakarta Province, Indonesia, were evaluated 

for their production of methane in vitro study and secondary 

metabolites by Hidayah et al. (2023) and Hidayah et al. 

(2024). The outcome demonstrates that the secondary 

metabolites of red tropical seaweed species, Palisada 

perforate (Bory) K.W. Nam, have potential to be used as 

additives to lower methane production in ruminants. 

Additionally, Hidayah et al. (2024) mentioned that P. 

perforata (Bory) K.W. Nam is a common seaweed species 

in coastal regions. The in vitro study shows that P. perforata 

(Bory) K.W. as supplementation on a basal diet (grass based 

and TMR ration based) is effective in decreasing methane 

production. However, there have been no in vivo studies 

regarding P. perforate (Bory) K.W. Nam supplementation 

as a goat feed additive. Therefore, in this experiment, we 

want to determine how supplementing P. perforata (Bory) 

K.W. Nam to basal diets affects goat nutrition digestibility, 

nitrogen balance, and fermentation characteristics. 

 

MATERIALS AND METHODS 

 

Ethical approval 

 The study was approved by the Ethics Committee of 

the Faculty of Veterinary Medicine UGM Yogyakarta, 

number: 143/EC-FKH/Eks./2024. 

 

Experimental animals and diets 

 This study was conducted during the period from 

January to June 2024. The animals included in the study 

were 12 Kacang goats and aged 2-3 years. These goats were 

divided into 3 treatment groups (n=4 per group) based on 

their live weight (LW), as follows: 26.96±4.10kg (control 

group), 25.16±4.15kg (2.5% organic matter (OM) P. 

perforate (Bory) K.W.Nam supplemented group), and 

23.84±5.26kg (5.00% OM P. perforate (Bory) K.W.Nam 

supplemented group). Goats were kept in individual pens 

equipped with feeding and water troughs. 

 The base daily diet for the goats consisted of 60% 

Napier grass (Pennisetum purpureum cv. Gama Umami) 

and 40% concentrate (TMR) on a dry matter (DM) basis. 

Daily feed and drinking water were provided ad libitum, and 

the diet consisted of a 60:40 ratio of Napier grass to 

concentrate, based on DM. The TMR ingredients and 

chemical composition are shown in Table 1. This diet was a 

control treatment and two treatments with supplementation 

of P. perforate (Bory) K.W.Nam at 2.5 and 5.0% OM. The 

P. perforate (Bory) K.W.Nam was collected from 

Gunungkidul, Yogyakarta, Indonesia in October 2022. 

Seaweed samples were spread out on the bamboo shelf and 

allowed to dry under the roof, which was partially exposed 

to sunlight for the shade drying method (25-30oC for 4 days) 

after being rinsed with water to remove sand and other dirt. 

The dry samples were grounder in a Willey mill with a 2mm 

screen until to a fine powder form. Moreover, this in vivo 

experiment was conducted for 60 days, 14 days for 

adaptation, and 46 days for treatment period. 

 

Nutrient intake and digestibility determination 

 During the collection period, which lasted 14 days, 

each animal's sample feed (given and refused) and faces 

were collected and weighed every 24 hours after morning 

feeding. Those samples were oven dried at 55oC for 96 h, 

weighed, and grounded to pass a 2mm screen using a 

Willey mill for proximate analysis (AOAC 2005). The 

following nutrients were measured: DM (dry matter), EE 

(ether extract), CF (crude fiber), CP (crude protein), NFE 

(nitrogen free extract), and TDN (total digestible nutrient). 

Feed intake was calculated by subtracting amount of given 

and refused feed per animal. The nutrient digestibility was 

determined based on feed intake minus total feces, all 

calculated on a DM basis (Sallam et al. 2023).  

 

Nitrogen balance determination 

 During the collection period (14 days), urine samples 

were taken and measured from each animal every 24 hours 

after morning feeding. Urine was taken in individual 

buckets. Before beginning the urine collection process, 

100mL of sulfuric acid was added to each bucket to prevent 

ammonia loss. A pH indicator strip non-bleeding pH 0–6.0 

(MColorpHast™, Merck, Germany) was used to measure 

the acidity of urine every day. The feed intake, faces, and 

urine samples were analyzed for crude protein according to 

the AOAC (2005) method. The nitrogen value was 

calculated by dividing crude protein by 6.25. Nitrogen (N) 

balance was calculated based on the difference between the 

total N in feed intake and the total N in feces and urine 

(Sinz et al. 2018). The feed N content multiplied by the feed 

intake yielded the total N intake. The retained N value was 

calculated by multiplying the total volume of daily feces 

and urine by the N content of those materials. This yielded 

the total N in feces and urine.  

 

Fermentation characteristics analysis 

 Samples for fermentation characteristics (pH, VFA, 

NH3, and rumen microbial protein) were taken from rumen 

 
Table 1: Chemical compositions of substrate experiment on dry matter basis with TMR supplemented Palisada perforate 

Ingredients % Chemical Composition Total Mixed Ration DM % 

Pennisetum purpureum cv. Gama Umami grass 60   

Concentrate  40   

Cassava by product 20.25   

Wheat pollard 45 OM 85.35 

Soybean meal 4.25 EE  2.06 

Coconut cake meal 14.5 CF 27.52 

Corn gluten feed 10.00 CP 10.58 

Molasses 5 NFE1 45.19 

Premix  1 TDN2 58.62 

Organic Matter (OM), Crude Fiber (CF), Crude Protein (CP), Extract Ether (EE), Nitrogen-free Extract (NFE), Total Digestible Nutrient 

(TDN); 1 NFE = 100 – (%CP + %CF + %EE + %ash); 2 TDN = 70.6 + 0.259 CP + 1.01 EE – 0.76 CF + 0.091 NFE (Sutardi 1980).



Int J Vet Sci, 2025, 14(3): 571-577. 
 

 573 

fluid from three goats for each treatment, on final days in 

total collection periods. A vacuum pump was attached to 

one of two flexible polyvinyl chloride tubes, each with a 

diameter of approximately 3 and 1cm, to collect rumen 

fluid samples from each goat's esophagus before morning 

feeding. The tubes were used to extract roughly 50mL of 

rumen fluid. Collected samples of rumen fluid were 

filtered through three layers of gauze and pH was 

measured after filtering using a pH meter (Hanna pH-

meter portable, Hanna Instruments, USA). VFA profile 

(acetate, propionate and butyrate) was determined using 

gas chromatography (GC 2010 Plus, Shimadzu Crop., 

Kyoto, Japan, HP-FFAP column (50.0m × 0.20mm × 

0.30μm) and FID detector) according to Cottyn and 

Boucque (1968) method. Ammonia determination was 

done according to the method described by Chaney and 

Marbach (1962) with a UV-vis microplate 

spectrophotometer at a wavelength of 750nm and a 

standard curve ((NH4)2 SO4, Merck ) (y = 0.028018x - 

0.01108, r2 = 0.99). Microbial protein measurements were 

carried out according to the method described by 

Plummer (1967) using a UV-vis microplate 

spectrophotometer at a wavelength 630nm and standard 

curve (BSA/Bovine Serum Albumin, Sigma) (y = 2.5075x 

+ 0.0824, r2 = 0.99). Methane gas calculation using two 

prediction equations was tested by Williams et al. (2019). 

The following two equations were used to predict the 

methane yield (MY): (1) MY=4.08×(acetate/propionate) 

+ 7.05 and (2) MY = 316/propionate + 4.4. 

 

Experiment design and data analysis 

Twelve Kacang goats were used in this study and 

arranged in a complete randomized block design with three 

treatments and four replications. The body weight is 

blocked due to a CV of >10%, which might affect nutrition 

consumption. All other data were statistically analyzed 

using ANOVA and the differences between treatments 

were assessed using Duncan’s multiple range test. All 

analyses were performed using the SPSS software and data 

are presented as mean±SEM. 

 

RESULTS 
 

Nutrient intake and digestibility 

 Supplementation of P. perforate (Bory) K.W.Nam at 

2.5-5.0% OM on TMR as a basal diet increased (P<0.05) 

goat nutrient intake and digestibility (except crude protein). 

The nutrients consisted of total dry matter, organic matter, 

ash, ether extract, crude fiber, nitrogen free extract and total 

digestible nutrients, which are shown in Table 2-4.  
 

Nitrogen balance 

 Adding 5.0% OM P. perforate (Bory) K.W.Nam on 

the basal diet also increased (P<0.05) nitrogen balance, but 

was not able to increase nitrogen intake, absorbed, and 

retained in the animal body (Table 5). 
 

Fermentation characteristics 

Total VFA production improved (P<0.01) with P. 

perforate (Bory) K.W.Nam supplementation at 5.00% OM 

(P<0.01). However, this high VFA production did not 

negatively affect the rumen pH condition, which ranged 

from 6.74 to 6.96. This treatment also significantly 

improved (P<0.01) propionate proportion and decreased 

acetate proportion, which resulted in the lowest acetate to 

propionate ratio and methane prediction (P<0.01). Table 6 

showed that supplementing P. perforate (Bory) K.W.Nam 

at 5% OM on TMR resulted in the highest (P<0.01) 

microbial protein synthesis and did not affect the NH3 

concentration (P>0.05). 

 
Table 2: Nutrient intake (g/kg BW0.75) in Kacang goats with TMR 

supplemented Palisada perforate 

Variable Control Control+2.5

% OM 

Control+5.0% 

OM 

P value 

DM 88.49±22.08a 117.22±5.18b 119.98±11.19b 0.03 

EE 1.98±0.46a 2.56±0.13b 2.65±0.21b 0.02 

CF 24.26±6.04a 32.28±1.53b 32.45±2.83b 0.03 

CP 9.11±2.77 12.21±0.66 12.87±1.31 0.07 

NFE 40.04±9.57a 52.91±2.24b 54.47±5.21b 0.03 

TDN 52.04±13.06 68.80±3.03 71.01±6.78 0.03 

Different superscripts in the same rows show significant 

differences (P<0.05); Dry Matter (DM), Extract Ether (EE), 

Crude Fiber (CF), Crude Protein (CP), Nitrogen-free Extract 

(NFE), Total Digestible Nutrient (TDN). 

 

Table 3: Nutrient digestibility (g/kg BW0.75) in Kacang goats with 

TMR supplemented Palisada perforate 

Variable Control Control+2.5% 

OM 

Control+5.0% 

OM 

P value 

DM 73.25±16.29a 99.49±5.31b 102.11±12.56b 0.02 

EE 1.75±0.36a 2.24±0.11b 2.32±0.22b 0.02 

CF 20.07±4.25a 27.36±1.79b 27.45±3.23b 0.01 

CP 7.88±2.44 10.97±0.58 11.80±1.76 0.07 

NFE 33.70±7.19a 45.30±2.33b 46.75±5.42b 0.02 

TDN 43.34±9.93a 58.67±2.84b 60.88±7.62b 0.02 

Different superscripts in the same rows show significant 

differences (P<0.05); Dry Matter (DM), Extract Ether (EE), 

Crude Fiber (CF), Crude Protein (CP), Nitrogen-free Extract 

(NFE), Total Digestible Nutrient (TDN). 

 

Table 4: Percentage of Nutrient digestibility in Kacang goats with 

TMR supplemented Palisada perforate 

Variable Control Control+2.5% 

OM 

Control+5.0% 

OM 

P value 

DM 83.18±3.06 84.87±2.48 84.94±2.81 0.68 

EE 88.58±3.41 87.56±1.86 87.48±2.05 0.81 

CF 83.26±3.44 84.75±2.91 84.43±2.84 0.82 

CP 86.36±2.47 89.80±0.88 91.36±4.82 0.18 

NFE 84.54±3.11 85.61±2.45 85.72±2.37 0.83 

TDN 83.60±2.91 85.29±2.22 85.56±2.83 0.61 

Different superscripts in the same rows show significant 

differences (P<0.05); Dry Matter (DM), Extract Ether (EE), 

Crude Fiber (CF), Crude Protein (CP), Nitrogen-free Extract 

(NFE), Total Digestible Nutrient (TDN). 

 
Table 5: Nitrogen balance in Kacang goats with TMR 

supplemented Palisada perforate 

Variable Control Control+2.5

% BO 

Control+5.0

% BO 

P Value 

 ------g of N/BW0.75------  

N intake  1.46±0.44 1.96±0.10 2.06±0.21 0.07 

N Excretion      

   N feces  0.20±0.06 0.20±0.02 0.17±0.08 0.83 

   N urine  0.008±0.003 0.008±0.003 0.005±0.001 0.22 

N balance 1.25±0.39a 1.75±0.10a 1.88±0.28b 0.05 

N output  ------% of N intake------  

  Absorbed 86.36±2.47 89.80±0.88 91.36±4.82 0.18 

  Retained 85.83±2.67 89.38±0.98 91.15±4.85 0.18 

Different superscripts in the same rows show significant 

differences (P<0.05); Nitrogen (N). 
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Table 6: Fermentation characteristics and methane prediction in Kacang goats with TMR supplemented Palisada perforate 

Variable Control 2.5% BO 5.0% BO P value 

Fermentation Characteristics      

pH 6.74±0.11a 6.96±0.12b 6.92±0.09b 0.02 

VFA total (mM) 96.61±3.01a 99.46±5.49a 116.74±3.74b 0.00 

Acetate (%) 75.08±2.09b 70.40±2.93a 70.87±0.70a 0.02 

Propionate (%) 17.41±1.73a 19.54±1.07ab 21.08±1.33b 0.03 

Butyrate (%) 7.52±0.70 10.06±1.89 8.05±1.64 0.11 

Acetate / Propionate 4.35±0.55b 3.62±0.35a 3.37±0.20a 0.02 

NH3 (mg/100 mL) 13.57±1.85 13.55±1.45 12.10±1.99 0.43 

Microbial protein synthesis (mg/100 mL) 277.89±31.42a 279.89±34.77a 362.30±36.62b 0.02 

Methane prediction (g CH4/kg DMI)     

MY 1 24.81±2.23b 21.81±1.44a 20.81±0.83a 0.02 

MY 2 23.37±2.32b 20.75±1.48b 17.28±0.79a 0.00 

Different superscripts in the same rows show significant differences (P<0.05); Volatile Fatty Acid (VFA); Dry Matter Intake (DMI) 

Williams et al 2019 (g CH4/kg DMI); MY = 4.08 × (acetate/propionate) + 7.05; MY = 316/propionate + 4.4. 

 

DISCUSSION 

 

 This study aimed to test 2 levels of inclusion on a basal 

diet (TMR, 60:40 ratio of Napier grass to concentrate) of 

one red seaweed species, P. perforate (Bory) K.W.Nam at 

2.5-5.0% OM compared with a control diet. The study 

wants to assess the effect on nutrient intake and 

digestibility, nitrogen balance and rumen fermentation 

characteristic parameters (pH value, total and partial VFA, 

NH3 concentration, microbial protein synthesis, and 

methane prediction) of Kacang goats. To the best of our 

knowledge, this is the first study in which 

the supplementation tropical red seaweed species, P. 

perforate (Bory) K.W.Nam with different levels, were 

tested on Kacang goat.  

 The inclusion of P. perforate (Bory) K.W.Nam up to 

5% OM increased (P<0.05) nutrient intake (total dry 

matter, ether extract, crude fiber, and nitrogen free 

extract), except for crude protein and total digestible 

nutrients intake. This indicates that P. perforate (Bory) 

K.W.Nam supplementation up to 5% OM on TMR as a 

basal diet with no refusals did not reduce its palatability, 

so increased the nutrient intake. A study by Rjiba-Ktita 

et al. (2019) showed that the inclusion of green seaweed 

up to 400 g/kg in concentrate has different sheep feed 

intake responses on different species, which are not 

affected by Ulva and decreased when Chaetomorpha was 

added. Nyloy et al. (2023) reported that supplementation 

of red seaweed, Asparagopsis taxiformis at 0.25% OM 

on TMR (composed of 35% concentrate feed and 65% 

grass silage on a DM basis) was significantly lower on 

dry matter intake compared to the control treatment in 

lactating Norwegian Red dairy cows. The different 

responses showed that seaweed: species, flavor (taste, 

smell and texture) and amount added could be attributed 

in part to ruminant palatability. Ginane et al. (2011) 

explained that all five basic tastes (sweet, bitter, salty, 

sour, and umami) are sensed by lingual receptors in 

ruminants, including sheep, cattle, and goats. The flavor 

that has a high positive hedonic value is umami, which 

elicits the most agreement in preferences. In contrast, 

sweet tastes appear to have a positive value in cattle and 

goats but not in sheep. Salty tastes can be either positive 

or negative depending on the needs of the body. The 

bitter taste appears to have a rather negative hedonic 

value. Last but not least, it's unclear what the sour taste 

is worth.  

 The umami and salty taste of P. perforate (Bory) 

K.W.Nam contributed to increasing the goat's nutrient 

intake. Fan et al. (2023) explained that taste modifiers can 

indirectly affect grazing behavior by controlling the 

amount of livestock feed intake. Glutamate is known to 

have a significant impact on the acceptability, palatability, 

and flavor of foods with umami taste in humans (Ginane et 

al. (2011). Matsumoto (2015) stated that monosodium 

glutamate (MSG) in seaweeds, inosine 5′-monophosphate 

(IMP) in meat and fish, and guanosine 5′-monophosphate 

(GMP) in mushrooms all contribute to the distinct flavor 

known as umami, which is the Japanese word is 

deliciousness. The umami taste indicates the presence of 

proteins in the substance (Ginane et al. 2011) and 

ingredients include peptides and amino acids (Jensen et al. 

2022). Milinovic et al. (2021) explained that seaweed can 

be a rich source of glutamate, an umami compound, but the 

amounts can vary greatly depending on the type of 

seaweed, where it comes from, how it is stored, and how it 

is extracted. Whereas, the salty taste indicates the presence 

of minerals (Ginane et al. 2011). Hidayah et al. (2024) 

reported that P. perforate (Bory) K.W.Nam contains 

minerals higher than 30%, as large as 47.15% DM and 

crude protein at 16.05% DM. Seaweeds' high mineral 

content gives them a naturally salty taste (Jensen et al. 

2022). Munoz and Diaz (2020) explained that seaweed may 

contain up to ten times more minerals than terrestrial 

plants. High amounts of different minerals in salt water, 

where seaweed is found, are the cause of this condition. A 

study by Guda (2018) explained that salty and sweet 

treatments can improve forage palatability. The salty and 

sweet treatments used in grasslands increase the bites 

number per minute, time spent at each feeding station, and 

the opposite effect when bitter taste agents are applied (Fan 

et al. 2023). 

 The increased nutrient digestibility (except the crude 

protein digestibility) with P. perforate (Bory) K.W.Nam 

supplementation might be due to the secondary metabolites 

(tannin) and mineral content (sulfur and phosphor) 

enhancing the microbial protein synthesis (Table 6) and not 

decreasing palatability. Tannins contribute to the decline in 

protozoa following the rising rumen bacteria population, so 

feed degradation and digestion are increasing. Protozoa 

population in the rumen that is either free or attached to 

methanogenic archaea, can be decreased by tannin and 

phlorotannin (Piñeiro-Vázquez et al. 2015). Newbold et al. 

(2015) explained that to obtain protein, protozoa engage in 
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predatory behaviour towards rumen bacteria. Besides that, 

the bitter taste of tannin from this treatment can still be 

tolerated by goats so it does not interfere with their 

palatability. Tanin compounds are commonly associated 

with the organoleptic properties of astringency and 

bitterness (Soares et al. 2020). This condition is because 

goats have a higher tolerance for bitterness than sheep or 

cattle. Hofmann (1989) reported that goats have a habit of 

eating dicotyledonous plants, which are rich in cell content, 

and also repeatedly produce bitter-tasting secondary 

compounds, so the goats came across bitterness flavor more 

frequently than sheep or cattle. Ginane et al. (2011) stated 

that compared to other mammals, fewer genes coding for 

the bitter receptors are found in cows, which means they 

are less tolerant of this taste.  

 In this research, tannin also protected protein from 

rumen microbial degradation, so the protein digestibility 

did not show an increase. Tannins are natural protectors of 

protein in ruminants, which form stable complexes with 

proteins in the rumen and are unstable in the abomasum 

(Getachew et al. 2000; Rodríguez et al. 2014). Polyphenols 

(like tannin) slow down the rumen's ability to break down 

protein and fiber by keeping microbes from attaching to 

them (Makkar 2003). Tannins can form complexes with 

protein and fiber fractions in the rumen, which decreases 

the degradability of both of them (Muir 2011). This result 

is linear with an NH3 concentration that does not increase 

(Table 6) with supplementation of P. perforate (Bory) 

K.W.Nam up to 5.0% OM, which indicates that the CP in 

this ration was not more degraded by rumen microbial 

population. Hidayah et al. (2024) reported the tannin 

content of P. perforate (Bory) K.W.Nam at 0.76 mg/g DM. 

 Meanwhile, minerals, particularly sulfur and 

phosphorus, which are crucial for microbial growth can 

boost the protein microbial synthesis (Pathak 2008). This 

mineral contributed to increasing feed degradation and 

digestion. P. perforate (Bory) K.W.Nam in this research 

contains sulfur and phosphorus of 0.81 and 0.09% DM. 

This mineral percentage can increase the protein microbial 

synthesis and is safe for palatability. In the study reported 

by Terry et al. (2023), the inclusion of 1 or 2% red seaweed 

(Mazzaella japonica) on TMR decreased the OM 

digestibility of mature beef heifers. M. japonica is 

relatively high in sulfur at 6.46% and phosphorus at 0.16% 

(Terry et al. 2022). Nasem (2016) declared that the majority 

of ruminants need between 0.18 and 0.24% DM of dietary 

sulfur. Meanwhile, the inclusion rates of M. japonica>2%, 

may raise concerns due to its high sulfur concentration, 

particularly when combined with other feed ingredients 

like distillers' grains or high sulfur concentration water 

(Terry et al. 2023). 

 Supplementing P. perforate (Bory) K.W.Nam at 5% 

OM tended to increase (P<0.1) nitrogen (N) intake, did not 

differ (P>0.05) N excretion (feces and urine), and increased 

(P<0.05) N balance. This is a good result because N 

excretion did not increase with seaweed supplementation, 

which will minimize environmental pollution and enhance 

ruminant productivity. This condition might be due to the 

P. perforate (Bory) K.W.Nam supplementation that 

contains tannin, which made the CP in the ration not more 

degraded by rumen microbial. Besides that, the degradation 

product from dietary CP by rumen microbes (NH3) was 

used for ruminal microbial protein synthesis, so the N urine 

was not increased. This result is linear with the microbial 

protein synthesis data, which increased with 5% OM 

supplementation of of P. perforate (Bory) K.W.Nam 

(Table 6). Terry et al. (2023) explained that ruminal 

microbes break down some dietary CP into NH3-N, amino 

acids, and peptides in the rumen. NH3-N serves as the main 

source of nitrogen for ruminal microbial protein synthesis. 

Similar results were reported by Belanche et al. (2016) and 

Terry et al. (2023). Adding 5% of brown seaweed 

(Laminaria digitata) to the basal diet (50:50 forage-to-

concentrate ratio) improved 9.9% of the microbial protein 

synthesis efficiency per unit of degradable OM (Belanche 

et al. 2016). In the study by Terry et al. (2023), 

supplementation up to 2% M. japonica on TMR (barley 

silage at 52%, barley straw at 44%, and vitamin and 

mineral supplement at 4% on a DM basis) as a basal diet 

linearly (P<0.001) increased the heifer N intake. The 

seaweed supplementation also linearly increased (P=0.020) 

fecal N excretion and did not affect total urinary N 

excretion, N fractions (allantoin, uric acid), total purine 

derivatives, microbial purine derivatives absorbed, 

microbial N flow, or retained N.  

 Adding P. perforate (Bory) K.W.Nam 2.5-5% OM on 

TMR increased pH value compared to the control treatment 

(6.75 vs 6.91-6.97). But, the seaweed supplementation did 

not disturb the rumen environment, because the pH values 

of all treatments were still in the normal range. Normal pH 

values can range from 5.50 to 7.50 depending on the type 

of feed and how often it is fed (Zheng et al. 2020). The 

highest in total VFA and propionate production was when 

TMR supplemented with P. perforate (Bory) K.W.Nam at 

5% OM. This treatment also had the lowest acetate and 

acetate propionate ratio. This result indicated higher 

propionate production compared to acetate, which means 

higher energy savings for production. Linear results 

showed higher microbial protein synthesis and lower 

methane prediction (Table 6) which could contribute to the 

sulfur and phosphorus content of P. perforate (Bory) 

K.W.Nam.  

 The in vitro study showed that supplementation of P. 

perforate (Bory) K.W.Nam decreased (P<0.01) protozoa 

population followed by low methanogenic archaea and 

increased the number of rumen bacteria and VFA 

production. Tannin P. perforate (Bory) K.W.Nam 

contributed to a decline in protozoa, which are symbiosis 

with methanogenic archaea, so decreased methanogenic 

archaea followed by reduced methane production. 

Scalbert (1991) also reported that methanogenic archaea 

are toxic to tannin monomers like pyrogallol, gallic acids, 

and tannic acids. Meanwhile, the lower methane 

prediction indicated more hydrogen is used in forming 

propionate than methane. Wang et al. (2023) explained 

that rumen metabolic hydrogen primarily through 

methanogenesis to forming methane and propionate 

synthesis. Theoretically, a promising strategy for 

lowering greenhouse gas emissions from ruminants could 

involve diverting hydrogen from methanogenesis to 

propionate formation, which would also likely increase 

animal productivity. Whereas, the NH3 concentration did 

not decrease when the basal diet added P. perforate 

(Bory) K.W.Nam up to 5% OM. The ranged NH3 

concentration from 12.16 to 13.45 mg/100 mL was 

sufficient to support the microbial protein synthesis 
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process. According to Schwab et al. (2005), depending on 

the circumstances surrounding fermentation, the ideal 

range of ammonia-N for bacterial growth is 5–11 mmol/L.  

 

Conclusion 

 The total mixed ration supplemented with Palisada 

perforate (Bory) K.W.Nam 5.0% OM resulted in the 

highest nutrient intake and digestibility, nitrogen balance, 

VFA total, propionate proportion, and microbial synthesis 

protein. This treatment also resulted in the lowest acetate 

proportion, acetate propionate ratio, and methane 

prediction but did not affect NH3 concentration. This 

combination has the potential to increase ruminant 

productivity.  
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