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ABSTRACT 
 

Apoptin from chicken anemia virus (CAV) is recognized for its anticancer potential. With over 800 available sequences, 

identifying the most effective variant is challenging. In this study, sequences were downloaded from GenBank, aligned 

via MEGA 11, and analyzed using Genesius Prime. Protein structure and database analysis were performed using Phyre 

2. Results show an average genetic distance of 0.005, with 27 out of 121 residues were constant. The most frequent 

substitutions (S67N, L25S, V73A, C118R) were observed in varying frequencies across sequences. The artificial 

apoptin variant, featuring these substitutions, revealed an additional alpha-helix at the C-terminus. Phosphorylation and 

glycosylation patterns were mapped across sequences, with phosphorylation motifs identified at the peptide's termini. It is 

recommended that apoptin with intact phosphorylation and glycosylation motifs be prioritized for anticancer applications. 
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INTRODUCTION 
 

Apoptin, also known as viral protein 3 (VP3), is 

derived from the chicken anemia virus (CAV) and 

demonstrates promising anticancer properties due to its 

ability to selectively target cancerous cells (Los et al. 

2009). This unique capability has been documented across 

a range of cancer types, including breast, liver, bone and 

colon cancers (Backendorf et al. 2008; Feng et al. 2020; 

Los et al. 2009). 

The chicken anemia virus (CAV), a virus affecting 

poultry worldwide, is primarily known for inducing 

immunosuppression and anemia, particularly through its 

impact on lymphoid and hematopoietic cells (Fatoba and 

Adeleke 2019; Zhang et al. 2024). Historically classified 

under Circoviridae (https://ictv.global/report_9th/ssDNA/ 

Circoviridae), CAV has been reclassified under 

Annelloviridae (Varsani et al. 2021; Yan et al. 2024). The 

CAV genome, comprising approximately 2200bp, includes 

three overlapping open reading frames (ORFs) coding for 

proteins associated with apoptosis and viral replication 

(Rosenberger and Cloud 1998; Lacorte et al. 2007). The 

apoptin protein, specifically coded by ORF2, selectively 

induces apoptosis in cancer cells without affecting normal 

cells (Koch et al. 1995; Yan et al. 2024). 

Over 800 sequences of CAV apoptins are available in 

GenBank, providing numerous options for selecting the 

sequence with the strongest anticancer potential. The full-

length genomes of hundreds of CAV strains have been 

analyzed,  revealing  that  the  global  CAV  has  separated 
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into two major clades with 3-4 subclades (Shah et al. 2023). 

The variability coefficient of each viral protein was greater 

than 1, indicating considerable amino acid drift (Shah et al. 

2023). Genetic variation in the CAV gene has been 

identified in the VP1, VP2, and VP3 genes (Abdel-

Mawgod et al. 2024). 

In this study, we analyzed all available apoptin sequences 

in GenBank, examining genetic distance, conserved and 

polymorphic amino acid residues, and evaluating both the 

3-D and secondary structures of the consensus peptide 

alongside the sequence containing the most common 

substitutions. The findings aim to support future research 

in identifying the most effective apoptin sequence. 

 

MATERIALS AND METHODS 

 

All the VP3 sequence data of CAVs available in 

GenBank were downloaded on September 9, 2024. Each 

sequence was annotated with the accession number, 

country of origin, and identification year. The sequences 

were aligned via MEGA 11 software. All sequences with 

incorrect amino acid sequences were excluded. The 

sequences are listed on the basis of continent (Africa, 

Europe, Asia, Oceania, North America, and South 

America). Overall genetic distance was calculated via the 

Kimura 2-parameter model (Kimura 1980). Conserved and 

variable residues were manually tallied using the sequence 

data explorer output from MEGA 11, while consensus 

residues were identified through Geneious Prime software. 

N-linked glycosylation was performed following Rao and 

Bernd (2010) and O-linked glycosylation was performed 

following Pisano et al. (1993). Phosphorylation motives 

were scanned following Amanchy et al. (2011). 

Analysis of the protein database and structural 

prediction for the consensus peptide, in comparison with 

the most common substitution pattern in the putative 

sequence, were performed using the online tool Phyre 2 

(Bennett-Lovsey et al. 2008; Kelley and Sternberg 2009). 

 

RESULTS 

 

The distribution and year of isolation or identification 

of CAV sequence data available in GenBank are presented 

in Table 1. Analysis revealed 828 global CAV sequences, 

which are predominantly from Asia (713). Data from 

Africa dated before 2010, America after 2021 and Oceania 

after 2011 were not available. 
 

Table 1: Global distribution and year of isolation or identification 

of CAV sequence data 

 Year of Isolation or identification  

Location Up to 

2000 

2001-

2010 

2011-

2020 

From 

2021 

Total 

Africa 0 0 39 4 43 

America (north and south) 4 8 9 0 21 

Asia 10 51 421 231 713 

Europe 12 2 16 7 37 

Oceania 1 11 0 0 12 

 

The overall mean distance was 0.005. The conserved 

residues were M1, S13, E32, G36, L44, S45, G48, A50, 

T56, L57, R58, S59, A60, T61, D63, G69, L76, Q80, P83, 

P84, S85, R88, P92, S93, L100, T107 and P109. The 

consensus peptide showed no glycosylation patterns of 

NXS or NXT; however, these patterns appeared in a few 

isolates. Many O-linked glycosylation patterns of XPXX, 

in which at least one X is T; TXXX, in which at least one 

X is T; XXTX, in which at least one R or K; and SXXX, in 

which at least one X is S, following reference Pisano et al. 

(1993), are spread across all sequences. SXXXXTP is 

phosphorylated at the amino and carboxy termini of the 

consensus peptide, whereas TPXXXXXR is 

phosphorylated at the amino terminus. 

Table 2 presents the number of strains harboring 

substituted residues of CAV differs from that harboring 

consensus apoptin which occurred in five sequence data or 

more. The four most prevalent substitutions, ranked by 

frequency, were S67N, L25S, V73A and C118R, occurring 

in 91, 51, 34, and 32 sequences, respectively. 

 
Table 2: The number of strains harboring substituted residues of 

CAV differs from that harboring consensus apoptin 

Position Residue in the 
most strain 

Substitution* number of strains harboring 
the substituted residue 

2 N S 5 
3 A G 9 

4** L P/H 11/5 
6 E D 7 

8 T S 7 
12 P Q 5 

19 P A 7 

23 R Q 10 
25 L S 51 

31 R K 12 
52 A V 7 

67 S N 91 
70 F S 5 

73 V A 34 
79 D N 5 

98 S N 17 
103 S N 17 

108 T A 12 
116 R K 17 

118 C R 32 

*Only substitutions that occurred in five sequences or higher were 
counted. ** substitution L4P occurred in 11 sequences, L4H in 5. 

 

Cartoon peptide modelling of apoptin in the consensus 

sequence and artificial sequence with the four most 

frequent substitutions is presented in Fig. 1. A search 

within the protein database yielded no matches with 

confidence levels exceeding 5%. Fig. 2 displays the 3-D 

protein secondary structure predictions for the consensus 

peptide alongside the putative sequence containing the four 

most common substitutions. Both figures indicate that the 

modified apoptin includes an additional alpha-helix at the 

carboxy end. 

 

DISCUSSION 

 

The selective killing of cancer cells is a prominent 

feature of apoptin as a breakthrough modality in cancer 

treatment in humans and animals. Although there have 

been no reports of the application of apoptin in animals, we 

believe that this method should also be an effective 

modality for cancer therapy in pet animals. Cancer causes 

pet animal suffering (Misdorp 1996; Merlo et al. 2008; Di 

Cerbo et al. 2014; Baioni et al. 2017). The risk of suffering 

neoplasia, especially in old dogs and cats are high 

(https://www.avma.org/). 

https://www.avma.org/resources/pet-owners/petcare/cancer-pets
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Fig. 1: Cartoon peptide modeling of apoptin in the consensus sequence (left) and artificial sequence with the four most frequent 

substitutions (right). The images are colored in an inverted rainbow from the N- to the C-terminus. Protein modeling was performed 

with the online resource PHYRE2 (http://www.sbg.bio.ic.ac.uk) (Bennett-Lovsey et al. 2008; Kelley and Sternberg 2009). Protein 

models were visualized with RasWin 2.7.5.2 (www.rasmol.org). 

 

 
 
Fig. 2: Secondary structure and disorder prediction of apoptin in the consensus sequence (above) and artificial sequence with the four 

most frequent substitutions (below). Protein secondary structure and disorder prediction was performed with the online resource 

PHYRE2 (http://www.sbg.bio.ic.ac.uk) (Bennett-Lovsey et al. 2008; Kelley and Sternberg 2009). 
 

Some of the key advantages of apoptin as an anticancer 

agent are, first, the selective targeting of cancer cells: 

Apoptin activates apoptotic pathways specifically in cancer 

cells, largely through increased levels of protein kinases in 

tumors (Caretta and Mucignat-Caretta 2011). Second, 

apoptin activity is independent of p53 (Jeurissen et al. 

1992; Zhuang et al. 1995; Danen-Van Oorschot et al. 

1997). In addition, apoptin shows minimal toxicity to 

healthy cells (Danen-Van Oorschot et al. 1997; Malla et al. 

2020). Moreover, apoptin has been proven to have a wide 

range of effectiveness in diverse cancer types (Tavassoli et 

al. 2005; Malla et al. 2020). Finally, apoptin can be 

combined with other therapies to overcome resistance to 

anticancer therapy (Bayat Mokhtari et al. 2017). 

http://www.sbg.bio.ic.ac.uk/
http://www.rasmol.org/
http://www.sbg.bio.ic.ac.uk/
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In selecting the most potent anticancer agent of 

apoptin, more than 800 sequences are available in 

GenBank. The CAVs originated from all continents but 

were mostly from Asia and were identified from 2011-

2020. Interestingly, the overall genetic distance was very 

low, but only 27 out of 121 (22.3%) conserved residues 

were present. Some of these effects might be related to 

the biological function of apoptin. The most frequent 

substitutions were S67N, L25S, V73A, and C118R, 

occurring in 11.0, 6.2, 4.1, and 3.9% of the 828 data, 

respectively. The global distribution of sequences with 

S67N and L25S mutations has occurred on all continents 

since 1999. V73A has been detected in all continents 

except Europe since 2003. C188R emerged on all 

continents except Oceania in 1997. These substitutions 

seem to have occurred not only recently. In addition, the 

well-identified phosphorylation site of T108 (Rohn et al. 

2002; Lee et al. 2007) was not conserved in our dataset. 

There were 12 strains with A (Table 2) and two with S. 

If T108 is indeed critical for phosphorylation, strains 

with aberrant residues at that site might express less 

anticancer activity. 

Apoptin seems to be novel, as a protein database 

search resulted in no hits with confidence > 5%. Protein 3-

D and peptide secondary structure prediction revealed that 

the artificial apoptin has an additional alpha-helix structure 

(Fig. 1 and 2). This might affect the anticancer activity of 

the respective peptide. 

We described here the present N-link and O-link 

glycosylation patterns. The glycosylation motives of 

apoptin have yet to be investigated. The consensus deduced 

amino acid sequence in our dataset indeed harbors no N-

Link glycosylation motif for NXS/NXT (Rao and Bernd 

2010). However, the NXS pattern occurred four times, 

whereas NXT occurred once across our dataset. The O-

linked glycosylation motif was present in the consensus 

sequence and in all strains. The patterns XPXX in which at 

least one X is T, TXXX in which at least one X is T, XXTX 

in which at least one X is R or K, and SXXX in which at 

least one X is S (Pisano et al. 1993) occurred 7, 3, 2, and 2 

times in the consensus, respectively. If glycosylation does 

occur in natural apoptin, some amino acid substitutions 

across the strains might affect the biological function of 

apoptin, including its anticancer capacity. 

Glycosylation is an important protein translational 

modification (PTM) process that involves aspartate, S/T or 

Y residues that target N- and O-glycosylation, respectively 

(He et al. 2024). It plays a role in protein folding, protein 

stability, and protein–protein interactions (Mustafa and 

Komatsu 2014). Changes in glycosylation have been 

shown to alter the function of respective proteins ( Reily et 

al. 2019; He et al. 2024). Although it has yet to be 

discovered, glycosylated apoptin might be involved in 

many processes, especially O-linked glycosylation. 

Other PTMs of phosphorylation should be 

considered in the selection of apoptin. Out of hundreds 

of phosphorylation motifs (Amanchy et al. 2011), we 

demonstrated at least two patterns, i.e., SXXXXTP was 

located at both ends of the consensus peptide, whereas 

TPXXXXXR occurred once at the proximal end. The 

four most common substitutions do not lead to the loss of 

these motives. 

Many aspects of apoptin need further investigation. 

Indirect evidence should be provided by the history of the 

clinical course of the respective CAV strains in chickens. 

Metadata of each sequence are not available. As of now, 

selecting the complete apoptin with intact 

phosphorylation and glycosylation motifs is essential 

before identifying the most effective sequence that 

exhibits strong anticancer effects. 

Because its coding and amino acid sequences are well 

known, many platforms and methods of administration are 

available. The first option is synthetic peptides. With only 

121 amino acids, apoptin can be synthesized. This could be 

the whole apoptin or minimal region of the apoptin domain 

required for certain effects on cancer regression 

(Jangamreddy et al. 2014; Noei et al. 2019; Zhang et al. 

2017). The next platform is plasmid DNA (Han et al. 2008) 

or vectored apoptin ( Kochneva et al. 2013; Backendorf and 

Noteborn 2014; Song et al. 2021), which can be produced 

as a fusion protein with other anticancer peptides. 

We conclude that the degree of CAV apoptosis varies. 

Among the 121 amino acid sequences of CAV strains 

worldwide, only 22.3% (27 residues) were conserved. The 

four most common substitutions were S67N, L25S, V73A, 

and C118R. The four most common substitutions do not 

lead to damage to the identified phosphorylation motifs. 
 

Data availability: The complete list of GenBank accession 

numbers, countries of origin, isolation and identification 

years as well as the fasta files of all the data as well as the 

continent-based datasets are available upon request. 
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