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ABSTRACT 
 

Prolonged assisted ventilation during anesthesia and critical care is associated with increased morbidity and mortality 

in both humans and animals. However, no study of mechanically ventilated patients has examined the mortality-

related physiology and pathology. Our study investigated physiological, hematological and pathological changes in 

pigs that died during anesthesia. Six pigs were placed under ventilation-assisted anesthesia for up to 48h. The heart 

rate (HR), respiratory rate (RR), mean arterial blood (MAP), end-tidal carbon dioxide (ETCO2), and oxygen saturation 

(SpO2) were monitored every 15min until the pigs dies. Blood glucose, serum lactate, pH, and serum bicarbonate 

(HCO3
-) were measured every 12h until death. Tissues were harvested from lung, liver, heart, and kidney of pigs 

immediately after death during anesthesia. All pigs died during anesthesia. Times of death varied. One pig died at 

approximately 18h (Group I), two pigs at 24h (Group II), one pig at 36h (Group III), and two pigs at 48h (Group IV). 

Decreased MAP was reported in all groups throughout anesthesia. Each group showed different changes before death; 

Group I and III showed decreased blood glucose (45mg/dL) and (17mg/dL), respectively; Group III showed elevated 

serum lactate (9.76 mmol/l) and reduced pH (7.13) that suggested metabolic acidosis; Group IV showed increased 

ETCO2 (64.35±5.79 mmHg). Pigs that survived longer showed a higher level of cellular injury to the liver and 

respiratory system.  Blood glucose, MAP, and ETCO2 should be carefully monitored during anesthesia for better 

patient outcomes and reduced mortality.  
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INTRODUCTION 

 

The prolonged use of mechanically assisted 

ventilation in operating rooms or intensive care units 

poses a major concern due to the associated mortality 

(Chelluri et al. 2004; Fernandez-Zamora et al. 2018). In 

the 2000s, a study was made of cases of in-hospital 

mechanical ventilation lasting from 24h to 96h (Douglas 

et al. 2002). The study showed that 47.4% of the patients 

died in the hospital, 32.6% of discharged patients died 

within a year and that the mortality rate increased with 

time spent on the ventilator. Another study of 

mechanically ventilated patients reported a mortality rate 

43.9% in the hospital but found that only 9% of 

discharged patients died within 6 months (Douglas et al. 

1997). However, neither of the reports showed significant 

physiological or pathological data. Therefore, the 

pathogenesis of mortality during long-term anesthesia 

with mechanical ventilation is still unclear. 

The cardiovascular system of the pig is similar to that 

of the human. A pig of approximately 30 to 40 kg has a 

heart of a similar size to the heart of a human child and 

the lung physiology of the pig also mimics that of humans 

(Hannon et al. 1990; Pehböck et al. 2015; Gabriel et al. 
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2021). A study of mechanically ventilated pigs was made 

during anesthesia maintained for 96h with ketamine and 

pentobarbital (Goldmann et al. 1999). The study showed 

non-significant changes in blood cell profiles, blood 

chemistry and intestinal pathology. And yet, the 

physiology and pathology of mechanically ventilated 

human patients is still unclear despite the associated high 

mortality. We propose that the physiological, blood and 

pathological changes in pigs that died at the early 

experimental endpoint may reflect both mortality and co-

mortality factors in humans. 

 

MATERIALS AND METHODS 

 

Animals 

The investigation was approved by Chulalongkorn 

University Laboratory Animal Center (CULAC), 

Chulalongkorn University, Thailand No. 1973017. Six 

mixed breed male pigs weighing between 20 and 30 kg 

were divided into four groups according to the time of 

death during anesthesia: at 18h (Group I), 24h (Group II), 

36h (Group III), and 48h (Group IV).  

 

Anesthetic Procedures 

Eight hours after food was withdrawn, the pigs were 

sedated with intramuscular injections of 0.5mg/kg of 

xylazine (X-LAZINE, L.B.S. Laboratory Ltd. Part., 

Thailand) and 3mg/kg of Tiletamine-zolazepam (Zoletil 

100, Virbac Laboratories, France). Anesthesia was then 

induced in the sternal recumbent position using 4mg/kg of 

propofol (Pofol, Dongkook Pharm, Korea) administered 

intravenously, and maintained via inhalation of 1.5-2.0% 

isoflurane (Aerrane. Baxter, US). A volume control 

ventilator (AX-500/400, Shenzhen Comen medical, 

China) I:E ratio 1:3, tidal volume 10mL/kg, was used to 

support oxygenation with 100% oxygen. Throughout the 

study, acetate Ringer’s solution was infused at 5-10 

ml/kg/h via the cephalic vein. Vital parameters were 

assessed every 15 min including heart rate (HR, 

beats/min), respiratory rate (RR, breaths/min), oxygen 

saturation (SpO2, %), mean diastolic blood pressure 

(MAP, mmHg), end-tidal carbon dioxide (ETCO2, 

mmHg) and electrocardiography. Immediately the patients 

were anesthetized, blood samples were collected for 

biochemical analysis, and this was repeated every 12h. 

 

Histopathological and Histochemical Studies  

The target organs, including lungs, liver, heart, and 

kidneys were harvested from the pig that died during 

anesthesia. The pathologist was blind from the 

experimental setup. Tissue samples were resected and 

fixed for 24h in 10% buffered formalin, then processed 

following the routine histopathological protocol. Tissue 

sections were H&E-stained to evaluate degeneration, 

changes and infiltration patterns of inflammatory cells, 

i.e., mononuclear cells, and neutrophils. A light 

microscope was used (Olympus BX60 Olympus 

Corporation, Essex, UK). Ten high power fields (HPF) in 

each sample were investigated under the microscope and 

images were captured using Image-Pro Insight version 9.1 

(Media Cybernetics, MA, US). Cellular grading was as 

follows: grade 0 (-) = 0% of histopathological changes, 

grade 1 (+) = 1-25% of histopathological changes, grade 2 

(++) = 26-50% of histopathological changes, grade 3 

(+++) = >50% of histopathological changes (Lvova et al. 

2012; Mets et al. 2015; Suyapoh et al. 2021). 

 

Data Analysis 

The physiological data and blood chemistry data were 

presented as mean±SD (Tabe 1) and mean±SE (Fig. 1 and 

2). The Prism 8.4.3 Graph pad (GraphPad Software, Inc., 

California, USA) was used to process the data. 

Histological images were investigated by a pathologist 

and compared between pigs that died at 18h (Group I), 

24h (Group II), 36h (Group III), and 48h (Group IV) after 

anesthesia. 

 

RESULTS 

 

The approximate survival times were 18h for one pig 

(Group I), 24h for two pigs (Group II), 36h for one pig 

(Group III), and 48h for two pigs (Group IV). The 

physiology data and blood chemistry data were analyzed 

from the time of measurement (6h) to the time just before 

death (Table 1). The physiological data were analyzed 

with reference to normal ranges throughout the time of 

anesthesia, including RR, HR, MAP, ETCO2, SpO2. 

Blood chemistry analysis took into account blood glucose, 

serum bicarbonate (HCO3
-), serum lactate, and pH.  

 

Cardiorespiratory Effects 

These parameters fluctuated in all groups between 6 

and 48h after the induction of anesthesia. In Group I, 

Group II, and Group IV, HR increased to 118.6±11.56 

beats/min before cardiac arrest. These results contrasted 

the HR of Group III which was 67.50±2.12 before cardiac 

arrest. MAP data were in line with HR data. The MAP of 

all pigs was between 41.50±13.44 and 60.23±9.33mmHg,  
 

Table 1: Physiological and chemical profiles (mean±SD) show final data before death  

Profile 
Time of death (Final data) 

Reference Values* 
Group I Group II Group III Group IV 

Respiratory rate 12.56±2.25 22.47±3.26b 14.00 21.15±5.75b 10-15breaths/min  

Heart rate 112.2±12.87b 116.2±23.93b 67.50±2.12a 118.6±11.56b 90-107beats/min 

Mean arterial blood 42.81±2.90a 55.41±12.72a 41.50±13.44a 60.23±9.33a 86-123mmHg 

End-tidal carbon dioxide (ETCO2) 34.33±1.18a 36.28±4.14 42.50±3.54 64.35±5.79b 35-45mmHg 

Oxygen saturation (SpO2) 99.56±0.51 97.62±4.77 100.0 99.75±0.54 95-100% 

Blood glucose 45a 105 17a 117.3±4.60 75-136mg/dL 

Serum bicarbonate (HCO3
-) 29.8 32.7±2.12 25.7a 37.1±3.25b 28-35mmol/L 

Serum lactate 2.07b 1.07±0.43 9.76b 1.25±0.21 0.5-1.5mmol/L 

pH 7.47 7.59±0.05b 7.13a 7.39±0.02 7.38-7.48 

The values bearing “a” were lower while values with “b” were higher than the maximum reference values. *(Hannon et al. 1990; 

Cooper et al. 2014; Solevåg et al. 2014; Morgaz et al. 2015; Malavasi 2015).  
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which indicated hypotension, and MAP remained in the 

critical range to the end apart from in Group III, where 

MAP increased from 47.75±3.19mmHg to 98.69±49.52 

mmHg after 24h of anesthesia and then dropped to 

41.5±13.44mmHg before cardiac arrest (Fig. 1). 

 The pigs were ventilated using a ventilator set at 10 

breaths/min, but they were able to breathe spontaneously at 

more than that rate. The RR of all the pigs was between 

12.00±0.43 and 22.47±3.26 breaths/min from 6h to the time 

before respiratory arrest (Fig. 1). ETCO2 is an indicator of 

carbon dioxide production and elimination out of the body. 

It is therefore influenced by ventilation. ETCO2 increased to 

64.35±5.79 mmHg in Group IV before respiratory arrest, 

whereas other groups were within the reference range from 

the beginning to the end. In addition, peripheral SpO2 

showed within the reference range (Fig. 1). 

Blood Glucose and Blood Chemistry 

Before death, blood glucose and blood chemistry 

changed suddenly in the first 12-36h of anesthesia (Fig. 

2). In Group I and Group III, blood glucose levels, an 

indicator of body metabolism, decreased from the normal 

values of 121 and 70mg/dL, respectively at 6h before 

arrest to 45 and 17mg/dL. Serum lactate, an indicator of 

anaerobic respiration, was within the reference range from 

6h to the time just before death in all pigs apart from 

Group I and III, in which serum lactate increased to 2.07 

and 9.76 mmol/l, respectively. The pH of Group III 

decreased to 7.13, which suggests the onset of metabolic 

acidosis (Fig. 2).  

 

Signs of Respiratory Pathologies  

This study comprised a histopathological examination 

of tissue samples of lung, liver, heart, and kidneys. 

Lesions were semi-quantitatively evaluated to provide 

profiles of cellular degeneration and inflammatory cell 

infiltration. The major pathological changes presented in 

lung and liver tissues while changes in heart and kidney 

tissues remained within normal limits. 

Generally, cellular degeneration was evaluated from 

observation of the peri-nucleolar space and cytoplasmic 

blebs (Fig. 3A). Peri-nucleolar space was observed mainly 

in the pneumocyte of the alveolar duct. It was identified 

by a clear or empty area within the pneumocyte cytoplasm 

(Fig. 3A, pink spots in color-inverted images). The 

grading level for pigs in Groups I, II and III was low (+), 

moderate (++), and moderate (++), respectively. Alveolar 

wall cytoplasmic blebs were characterized by outward 

bulging of the cell membrane of pneumocytes. In Groups 

II and III cytoplasmic bleb was graded moderate (++) and 

in Group I there was no lesion development (Fig. 3B). 

Pulmonary emphysema and enlargement of the airspaces 

were observed mainly in the peripheral area of the lung 

and occasionally around the bronchus. Atelectasis of the 

lung, partial collapse of the air sac, was noticed within the 

pulmonary parenchyma and air spaces. The grading level 

of these changes in Groups II, III and IV was moderate 

(++), but was low (+) in Group I (Fig. 3B). Congestion 

was identified by the engorgement of red blood cells in 

vascular areas. It was presented only in Group I, at the 

low grade (+) at short-term anesthesia (Fig. 3B). 

Inflammatory cell infiltration into the lung parenchyma 

was observed in all groups at the low grade (+) over all 

the period of anesthesia. Changes in bronchiolar tissue 

were assessed along with the treatment. There were no 

significant changes in the airways of pigs in Groups I, II 

and III (Fig. 3B). 
 

 

 

 

 

 

 

 

 

Fig. 1: Dynamic changes in cardiac 

and respiratory parameters 

(mean±SE) include heart rate (HR), 

mean arterial blood pressure 

(MAP), respiratory rate (RR), End-

tidal carbon dioxide (ETCO2), and 

oxygen saturation (SpO2). MAP 

was within the critical reference 

throughout anesthesia, whereas 

ETCO2 gradually increased to 

above the reference limit, 

especially in group IV. 
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Fig. 2: Dynamic changes in 

metabolism and blood chemistry 

(mean±SE) include blood glucose, 

serum lactate, pH and serum 

bicarbonate. Pigs were given a 

general anesthetic until death at 

various hours. Low blood glucose 

was found in groups I and III, 

whereas increases in serum lactate 

were shown in group III. 

 

 

 

 

 

 

 

Fig. 3: Pigs were anesthetized and 

supported with mechanical 

ventilation. Observed pathological 

changes of the lung and airway 

included cellular degeneration, 

emphysema, atelectasis, 

congestion, and inflammatory cell 

infiltration. Images (A) show 

alveolar cell degeneration, 

including peri-nucleolar space and 

cytoplasmic bleb using 

cytochemistry (H&E) and inverted 

pictures of four groups: original 

magnifications = ×40 and ×100. 

Group I was a pig that died on 18h, 

Group II included two pigs that 

died on 24h, Group III was a pig 

that died on 36h, and Group IV 

included two pigs that died on 48h. 

In Group I, mild peri-nucleolar 

spaces without cytoplasmic bleb 

were observed. The increasing 

number of peri-nucleolar spaces 

(pink) and moderate number of 

cytoplasmic blebs were seen in 

Group II, III and IV. The highest 

number of peri-nucleolar spaces 

with cytoplasmic bleb was seen in 

the last section. The table (B) lists 

dynamic changes of each 

pathological lesion and group. 

 

 

Overall, histopathological examination of Group IV 

showed a high grade (+++) of cytological and tissue 

changes. The degeneration of the lung was primarily 

detected in the airway at grade 2 (++) and extended to 

pulmonary parenchyma at grade 3 (+++). Bronchiolar cell 

degeneration, including Clara cell loss of bleb, epithelial 

bleb, and sloughing of the epithelium was observed (Fig. 

3B). Semi-quantitatively, peri-nucleolar space and 

cytoplasmic bleb of the pneumocyte were significantly 

changed (Fig. 3A). These changes were seen with a low 

level of inflammatory cell infiltration, e.g., neutrophils 

and mononuclear cells, including macrophages, and 
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hemosiderinophages (hemosiderin-laden macrophages). 

Ten per cent of neutrophils accumulated along the 

peribronchiolar area and inside the bronchiolar lumen.  

 

Signs of Liver Pathologies  

Hepatobiliary injuries in response to short to 

moderate-term anesthesia, such as centrilobular-midzonal 

degeneration, cholestasis, congestion, sinusoidal 

dilatation, portal degeneration, and inflammation were 

evaluated (Fig. 4A-C). Centrilobular-midzonal 

degeneration was indicated by vacuolar ballooning areas 

within hepatocytes established in the zone of the hepatic 

lobule, including the intermediary zone (purple) and the 

perivenous zone (blue) (Fig. 4B). The change was first 

observed only in Group III at the moderate grade (++) 

(Fig. 4A). Semi-quantitatively, congestion and cholestasis 

displayed a similar trend, showing a low grade (+) in all 

terms of anesthesia (Fig. 4C). Sinusoidal dilatation from 

anesthesia in Groups I, II and III was low (+), low (+), 

and moderate (++), respectively. Inflammatory cell 

infiltration and portal system degeneration was not 

detected in these groups (Fig. 4C). 

Zonal degeneration was significant in Group IV. 

Ballooning and vacuolar degeneration presented at 

moderate grade (++) and high grade (+++), respectively. 

The pattern and detail of centrilobular-midzonal 

degeneration are shown in Fig. 4Bi-iii. Dilatation of the 

hepatic sinusoid was observed at the high grade (+++), 

whereas congestion, cholestasis, inflammation, and portal 

injuries presented at the same grades as Group I, II and III 

(Fig. 4A, C).  

These results suggest that prolonged assisted 

ventilation during anesthesia induced cellular injuries in 

the lungs and airway, causing hypoxia, resulting in severe 

centrilobular-midzonal degeneration of the hepatic lobule. 

shown that isoflurane directly inhibited insulin secretion

 

 

 

 

 

Fig. 4: Pigs were anesthetized and 

supported with mechanical 

ventilation. Observed pathological 

changes of the hepatic parenchyma 

and portal system included 

hepatocyte degeneration 

(vacuolation, and ballooning), 

congestion, cholestasis, sinusoidal 

dilatation, and inflammatory cell 

infiltration. Group I was a pig that 

died on 18h, Group II comprised 

two pigs that died on 24h, Group 

III was a pig that died on 36h, and 

Group IV comprised two pigs that 

died on 48h. Images (A) show 

hepatocyte degeneration using 

cytochemistry (H&E), moderate 

and high grades of vacuolation 

were observed in group III and IV, 

respectively. Unremarkable 

changes in the portal area were 

observed in all groups. Original 

magnifications = ×10, ×40, ×100. 

Zonal hepatocellular degeneration 

(B). Photomicrograph of affects 

hepatocytes within defined areas 

(centrilobular-midzonal zone) of 

the hepatic lobule. The 

degeneration pattern is 

characterized by the presence of 

vacuolar-ballooning degeneration 

of the hepatic parenchyma (Bi), 

Zonation of the liver, including 

periportal area (orange), midzonal 

area (purple), and centrilobular 

area (blue) (Bii), the illustration of 

centrilobular-midzonal 

degeneration show vacuolization 

of blue and purple area of liver 

(Biii). Original magnifications = 

×10. The table (C) lists the 

dynamic changes of each 

pathological lesion and group. 
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DISCUSSION 

 

Our study showed that a decrease in glucose occurred 

during the first 36h of anesthesia. Previous studies have 

from pancreatic beta cells (Desborough et al. 1993) and 

impaired glucose tolerance during anesthesia (Tanaka et 

al. 2011; Tanaka et al. 2005). Moreover, prolonged 

inhalation-maintained anesthesia may induce changes in 

splenic hemodynamics which affect hepatic blood flow 

(Bernard et al. 1992) and pancreatic perfusion, resulting in 

both impaired hepatic glucose uptake and insulin output 

(Kim et al. 2016).  

Isoflurane inhalation induced hepatic injury (Gunza 

and Pashayan 1992) and increased liver apoptosis, in part 

by regulating the expression of IGF-1 (Zhu et al. 2017). 

Liver dysfunction leads to hypoproteinemia and 

hypoglycemia that can impair gluconeogenesis and 

eventually glycogen storage (Bednarski et al. 2011). 

Hepatobiliary pathologies such as hepatocyte 

degeneration, cholestasis and oedema were found in all 

pigs, but far more in the pig that died 48h after anesthesia. 

Prolonged mechanically assisted ventilation during 

anesthesia coincided with hepatocellular damage that was 

associated with local ischemia caused by hypoxia from 

lung damage or reduced hepatic blood flow due to 

hypotension, which presented in all the pigs in our study. 

Glucose is the main metabolic fuel for the brain under 

normal physiological conditions (Mathew and Thoppil 

2021). Reduced blood glucose is a significant indicator of 

metabolic failure before death. Hypoglycemia-induced 

bradycardia and sudden death (Nordin 2014; Reno et al. 

2018) has been associated with ST wave change, 

lengthening of the QT interval (Robinson et al. 2003; 

D'Imperio et al. 2021), and cardiac repolarization 

(Koivikko et al. 2008; Andersen et al. 2021). Thus, we 

suggest that blood glucose must be monitored for all 

patients who undergo assisted ventilation, and 

hypoglycemia should be treated immediately with 

intravenous glucose.  

The highest serum lactate level we recorded was 

9.76mmol/l and the lowest pH was 7.13 at 12h before 

death. Mortality is strongly correlated with blood glucose 

and serum lactate levels. A study of critically ill patients 

(Chen et al. 2019) found that the mortality rate was 

approximately 23% when serum lactate was higher than 

2.3mmol/l and approximately 10% when blood glucose 

was lower than 70mg/dL (Freire Jorge et al. 2017). During 

the first 24h after admission, the coincidence of low 

glucose and high serum lactate was associated with a high 

risk of acute kidney injury, liver dysfunction, and hospital 

mortality (Freire Jorge et al. 2017). The results of our 

study support these findings. The decrease in blood 

glucose level as a result of ischemia (Desouza et al. 2003; 

Paelestik et al. 2017) led to lactate production and 

accumulation, which induced tissue acidosis and cellular 

damage (Bakker et al. 1996; Rehni et al. 2018). 

Hyperlactatemia is a marker for tissue hypoperfusion 

(Régnier et al. 2012; Alegría et al. 2017) or hypoxia, 

which indicate the onset of the anaerobic glycolysis 

process (Garcia-Alvarez et al. 2014; Semler and Singer 

2019). Venous blood gas analysis of 302 dogs (Kohen et 

al. 2018) showed that plasma lactate concentration levels 

between 3.3 and 7.7mmol/l coincided with a mortality rate 

of 45.4%. In a study of 185 cats (Kohen et al. 2018), 

serum lactate concentration between 3.5 and 8.7mmol/l 

was correlated with a mortality rate of 44.6%. Patients 

with blood lactate concentrations of more than 2.5mmol/l 

should be closely evaluated for signs of deterioration 

(Kohen et al. 2018).  

In this study, MAP showed a decline from the 

beginning of anesthesia until death, perhaps due to 

hypoglycemia or prolonged isoflurane inhalation. 

Isoflurane can induce changes in heart rate and MAP that 

reduce both cardiac output (the product of heart rate and 

stroke volume) and total peripheral resistance (TPR) 

through a reduction of the sympathetic nervous system 

(Constantinides et al. 2011). The sympathetic nervous 

system initiates the mechanism of cardiovascular 

stabilization, which stimulates catecholamine release 

leading to positive inotropic cardiac function, increased 

heart rate (Schwertz et al. 2004; De Backer and Foulon 

2019), increased oxygen demand, and increased blood 

glucose level (Barth et al. 2007; López Garcia de Lomana 

et al. 2022). The hemodynamic balance of physiological 

activity depends on tissue oxygen metabolism (Shen et al. 

2021). If certain conditions that cause tissue and organ 

damage cannot be resolved, organ failure and death occur 

(McKinley et al. 2016).  

The primary adverse effect of isoflurane is respiratory 

depression (Gargiulo et al. 2012; Cavalcante et al. 2018), 

followed by lung injury caused by systemic vasodilation 

and reversed pulmonary constriction (Putensen et al. 

2002). Rats exposed to 1.5% isoflurane for 4h showed 

highly increased incidence of neurogenic pulmonary 

edema to 100%, due to the release of vascular endothelial 

growth factor in bronchial epithelium (Kandatsu et al. 

2005). Strosing et al. (2016) reported that ventilated mice 

that inhaled isoflurane for 6h presented histologic features 

of lung injury. Dogs with injured lungs that received low 

concentrations of isoflurane (0.25, or 0.5 vol%) during 

mechanical ventilation showed decreased systemic blood 

flow and oxygen delivery (Putensen et al. 2002).  

In the present study, longer durations of anesthesia 

resulted in an increase in lung injury.  Emphysema, 

atelectasis, and inflammatory cell infiltration showed in 

all the pigs, but the pig that died at 48h showed a higher 

level of ETCO2, which has been associated with 

inadequate ventilation or decreased CO2 elimination 

during anesthesia (Peltekova et al. 2010; Solhpour et al. 

2022), which led to respiratory failure in our study. A 

study of patients who showed postoperative pulmonary 

complications (PPCs) acquired during prolonged (≥24h) 

anesthesia with mechanical ventilation (Pedersen et al. 

1992) found that the most frequent lesions on the PPCs 

were pathologies of atelectasis and pneumonia, which 

presented on 2.6% and 50% of the subjects, respectively. 

Correct mechanical ventilation relies on pressure and 

volume control. Continuous ventilation with a high tidal 

volume (>700 ml) and high positive end-expiratory 

pressure (PEEP) (>30 cmH2O) was associated with acute 

respiratory distress syndrome (ARD), which developed at 

48h after exposure (Gajic et al. 2005). Moreover, longer 

isoflurane-maintained anesthesia induced more alveolar 

macrophage aggregation, but less phagocytic activity 

(Kotani et al. 1998). Long term exposure to isoflurane is 

also related to airway inflammation (Oshima et al; 2021 
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Odeh et al. 2022). IL-8 is one of the key chemokines 

involved in the migration of epithelial granulocytes, 

which promote pulmonary inflammation and asthma 

(Cromwell et al. 1992). We found more epithelial 

pathology lesions of the airway in the pig that died 48h 

after anesthesia was induced. Longer exposure of 

epithelial cilia to isoflurane resulted in less frequent 

ciliary beating, as shown by a rat tracheal epithelial model 

(Matsuura et al. 2006). 

 

Conclusion 

MAP was below the reference range in all pigs before 

death. Severe hypoglycemia was found in the pigs that 

died between 18 and 36h after anesthesia was induced. 

Therefore, blood glucose might be a good predictor of 

early endpoint death. Only the pig that died at 48h showed 

a high ETCO2. All the pigs showed pulmonary 

degeneration and emphysema lesions, but a longer 

duration of anesthesia resulted in more pathological 

changes in lungs, airway, and signs of life. Therefore, 

blood glucose, MAP, and ETCO2 were the essential 

parameters that we conclude should be closely monitored 

during anesthesia. The first system to fail during assisted 

ventilation under anesthesia might be the glucose 

metabolism and the second, the respiratory system. 
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