Effect of Administration of Humic Acid on Somatic Cell Count and Total Bacteria in Saanen Goats

Taskin Degirmencioglu¹ and Selda Ozbilgin²

¹Department of Feed Technology and Animal Nutrition; ²Department of Animal Health and Husbandry, Uludag University Karacabey Vocational School, Republic of Türkiye

ABSTRACT

This study was carried out to determine the effect of diets containing humic acid on composition and quality traits of milk (selected) in 18 Sannen goats. The animals (2 years old, 52 kg live body weight) were in 2nd lactation and fed three diets containing 0 g kg⁻¹ humic acid (T₁), 1 g kg⁻¹ humic acid (T₂) and 3 g kg⁻¹ humic acid (T₃) in a 3x3 Latin square design experiment. Each period consisted of a 21d adaptation phase and a 7 d sample collection phase. Milk samples were collected at the end of the sample collection periods. Total DM intake values were found to be 1.73, 1.74 and 1.79 kg d⁻¹ for T₁, T₂ and T₃, respectively. The fat (3.55, 3.67 and 3.58%), non-fat solids (SNF) (8.41, 8.30 and 8.58%), protein (3.73, 3.60 and 3.92%) and lactose percentages of milk (3.82, 3.83 and 3.77) were similar for T₁, T₂ and T₃ groups. The administration of humic acid did not increase hygienic quality of milk. Somatic Cell Count of milk were determined as 257, 212 and 189 SCC (x 10³) for T₁, T₂ and T₃, respectively (P>0.05). Total Bacteria in milk were also determined as 239.7, 154.9 and 159.7 TB (x10³). In conclusion, administration of humic acid had a minor effect on somatic cell count and total bacteria.

Key words:
Goat
Humic acid
Milk
Somatic cell count (SCC)
Total bacteria (TB)

INTRODUCTION

The nutritional quality of raw milk is influenced by many factors. Milk somatic cell count (SCC) constitutes a useful tool to measure milk quality, health status of the mammary gland and the changes in milk composition. Penetration of pathogenic microorganisms in the teat canal irritates and invades the delicate mammary tissue causing an inflammatory response and consequent changes occur in the milk. Increased SCC is associated with reduction in milk yield, changes in milk quality and composition. Increased cost also results from cow treatment, discarded milk and premature culling.

Bad milk quality has an impact on the economics of milk production and technological properties (Pridalova et al., 2009). The determination of the somatic cell count (SCC) is used worldwide in dairy practice to describe the hygienic control of the milk (Urech et al., 1999; Ma et al., 2000; Wellnitz et al., 2009). Milk processors strive for reduced SCC because somatic cells cause a disagreeable taste and decrease the shelf life of milk. Low somatic cell count is important, and some dairy firms pay a premium price for milk with low SCC (Revilla et al., 2007).

SCC of milk also is an important factor in relation to both the processing properties and stability of dairy products. In cheese production, high cell count milk leads to lower cheese yields, longer coagulation and ripening times, weaker curds (Chen et al., 2010).

Besides, high SCC is directly associated with adverse effects on human health including poor farm hygiene, antibiotic residues and the presence of pathogenic bacteria and toxins in milk.

Humic substances have been known to exhibit antimicrobial properties. Species for which natural humic substances have been shown to be inhibitory include C. albican, Ent. Cloacac, Prot. Vulgaris, Ps. Aeruginosa, S. typhimurium, St. aureus, St. epidermidis, and Str. pyogenes Riede et al. (1991). It seems that within the body, humates stimulate the “good” microbes while suppressing the “bad” microbes. Although numerous studies evaluated use of HA fermentation products, there is no research data on the evaluation of its use in goat milk production. The aim of this work was to evaluate the effects of humic acid on performance of dairy goats in early lactation, and on milk composition, total bacteria and somatic cell counts.
MATERIALS AND METHODS

This research was conducted in goat farm located of Karacabey. The humic acid (HA) material used for this study was purchased from the Natural Feed Company. The humate product (Bovifarm, Bio Remedies) used for this study was dark black in colour. The certified composition of HA produced by Bovifarm contained oxyhumolite (total humic acids 68%, free humic acids 48%, minerals 18%). Lactating goats aged 2-3 years were grouped primarily according to the milk yield and live body weight prior to the start of the experiment (Table 1). Eighteen Saanen goats at 60-69 days of their lactation were selected in a replicated 3×3 Latin square design. The experimental period lasted for 4 weeks, in which the first three weeks were used for adaptation and data for statistical analysis were collected in the fourth week. Thus, the total experimental period lasted for 90 days.

In each of the three periods, the goats were randomly assigned to one of three dietary treatments (dry matter (DM) basis). T1 diet with no humic acid (HA); T2 diet with 1.0 g HA kg⁻¹; or a T3 diet with 3.0 g HA kg⁻¹ were used for the study. Diet also consisted of 40% barley, 34% wheat, 14% soybean meal, 10% sunflower meal, 1.4% marble powder, 0.5% salt and 0.1 Vitamin + mineral mix (Table 2). The dosages of HA added to diet were determined after reviewing multiple studies from Thomassen et al. (2000) and by Tunc and Yoruk (2007). Sanen goats were fed on ad libitum pasture, corn silage (1 kg d⁻¹), alfalfa (500 g) and 0.5 kg of the experimental diet (per 1.0 kg of milk per day). Goat ration was formulated for 2.90 kg d⁻¹ of milk production with 3.5% fat and 3.5% protein in the 2nd lactation according to the NRC recommendations. The animals were milked twice daily at 6:30 a.m. and 7:30 p.m. The milk production of each goat was measured daily. All the samples were stored at 5±1°C before analysis or shipment. Dry matter intake was measured at the end of sample collection period by weighing the offered diet and refusals from the previous day. The individual roughage consumption was not determined because a group feeding protocol was used in the study. The dry matter, organic matter, crude protein, crude fat and ash contents in the diets were analysed according to AOAC methods (1990). Neutral detergent fibre (NDF) and acid detergent fibre (ADF) values were determined using the methods outlined by Robertson and Van Soest (1981). The metabolizable energy and (net energy lactation (NET)) contents were also estimated (NRC, 1975). The somatic cell count (SCC) was determined with a somacount 150 (Bentley Instruments, chaska, USA). The total bacteria count was determined the number of bacteria in a sample that can grow and form countable colonies on Standard Methods Agar after being held at 32°C (90°F) for 48 hours (Anonymous, 1992). The non-fat solids (SNF), fat, protein and lactose contents of milk were analysed using a Milcosan FT-120 device.

Data for various milk parameters were analysed using the general linear models procedure in Minitab (1998) using the following model described by Cochran and Cox (1957):

\[Y_{ijkl} = \mu + T_i + P_j + C_k + E_{ijkl} \]

\[Y_{ijkl} = \text{observation, } \mu = \text{population mean, } T_i = \text{treatment (i = 1, 2 or 3), } P_j = \text{period (j = 1, 2 or 3), } C_k = 1, 2, 3, \]

\[..........16, 17 or 18 and E_{ijkl} = \text{residual error. Means were separated by Duncan’s multiple range test.} \]

RESULTS AND DISCUSSION

The chemical compositions of the diets, alfalfa hay and corn silage are presented in Table 2. Dry matter (DM), crude protein (CP) and ME values were similar for diets T1, T2 and T3; however, the crude ash content in diet T1 was lower than those in diets T2 and T3. Dry matter (DM), crude protein (CP), Ether extract (EE) and ME values were similar for diets T1, T2 and T3.

The effects of the treatments on DMI, milk composition, SCC and total bacteria are presented in Table 3. Silage, alfalfa and total DMI were similar for all goats.

The effects of diets with 0, 1.0 and 3.0 g HA kg⁻¹ on goat live body weight were tested. No significant changes in live body weight or DMI were noted. These results were consistent with a previous report (Livestock, 2003), which stated that HA did not affect the feed intake of dairy cows at the end of the trial; it is also consistent with the findings of Vucskits et al. (2010), who reported that low or high doses of HA did not affect the DMI and body weight in rats. However, Chirase et al. (2000) demonstrated a decrease in DMI during the first 28 days of lactation for dairy cows fed a lower HA concentration (7.8 g kg⁻¹) vs. a control and increased concentrations (15.6 and 31.2 g HA kg⁻¹, respectively). Similarly, McMurphy et al. (2011) reported that DMI in Holstein steers decreased for 5.0 and 10.0 g kg⁻¹ HA and increased for 15.0 g kg⁻¹ HA compared to controls. Degirmencioglu (2014) concluded that the administration of HA improved milk yield by 0.34 kg d⁻¹. HA had no significant effect on the percentages of fat, SNF, protein or lactose in milk. Contrary to these observations, some reports have shown that HA treatment improved the milk composition (Thomassen et al., 2000; Livestock, 2003). The observed response could be due to lactation length, ruminant species (dairy cows vs goat) and the source of the HA product.

Mastitis is characterized by physical, chemical and bacteriological changes in the milk and pathological changes in the glandular tissue of the udder (Sharma, 2007). It is also defined as inflammation of mammary gland parenchyma, which is caused by bacteria and its toxins (Sharma et al., 2006). The milk SCC is the basis for abnormal milk control program for cows, goats and sheep. In USA the legal limit established by the Food and Drug Administration for cows is 750000 cells ml⁻¹, and for goats and sheep it is 100 000 cells ml⁻¹. In The European Union (EU) the legal limit for cows is 400 000 cells ml⁻¹ and there is no legal limit for goats and sheep (Paape et al., 2007). Paape et al., 2007 also reported SCCs were lowest at first parity averaging approximately 200 000 cells ml⁻¹ at 15 days of lactation and reached maximum counts of around 500 000 cells ml⁻¹ at 285 days of lactation for goats. By the fifth parity, the counts averaged approximately 250 000 cells ml⁻¹ at 15 days and increased to a maximum of 1150 000 cells ml⁻¹ at 285 days of lactation. Somatic cell counts for uninfected mammary glands have been reported to increase with stage of lactation and parity (luengo et al., 2004). SCC
Table 1: Basic information of examined saanen goat

<table>
<thead>
<tr>
<th>Groups</th>
<th>Number of goats</th>
<th>Body weight (kg)</th>
<th>Days in milk</th>
<th>Milk production (kg d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>51.10±3.298</td>
<td>60.33±4.177</td>
<td>2.90±0.209</td>
</tr>
<tr>
<td>Treatment T1</td>
<td>6</td>
<td>54.15±4.059</td>
<td>65.50±6.339</td>
<td>2.96±0.242</td>
</tr>
<tr>
<td>Treatment T3</td>
<td>6</td>
<td>49.20±3.769</td>
<td>69.00±1.291</td>
<td>2.98±0.243</td>
</tr>
</tbody>
</table>

Table 2: Chemical composition of diet and alfalfa and corn silage (g kg⁻¹)

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Roughages</th>
<th>Diet</th>
<th>0 Humic acid</th>
<th>1 Humic acid</th>
<th>3 Humic acid</th>
<th>Alfa hay</th>
<th>Corn silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM²</td>
<td>903.0</td>
<td>900.9</td>
<td>901.0</td>
<td>890.0</td>
<td>368.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>821.8</td>
<td>814.5</td>
<td>809.2</td>
<td>778.6</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>225.3</td>
<td>224.7</td>
<td>220.1</td>
<td>195.7</td>
<td>29.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>35.2</td>
<td>34.6</td>
<td>33.3</td>
<td>28.5</td>
<td>13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELL</td>
<td>106.8</td>
<td>101.4</td>
<td>101.8</td>
<td>247.2</td>
<td>76.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>81.2</td>
<td>86.4</td>
<td>91.8</td>
<td>111.4</td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen free ext.</td>
<td>454.5</td>
<td>453.8</td>
<td>454.0</td>
<td>307.2</td>
<td>229.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>169.2</td>
<td>168.2</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td>301.5</td>
<td>303.6</td>
<td>300.8</td>
<td>353.6</td>
<td>150.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>139.1</td>
<td>140.1</td>
<td>138.79</td>
<td>294.3</td>
<td>91.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL</td>
<td>38.9</td>
<td>38.7</td>
<td>37.0</td>
<td>70.5</td>
<td>17.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME (Kcal kg⁻¹)²</td>
<td>2617.0</td>
<td>2630.0</td>
<td>2613.0</td>
<td>1864.0</td>
<td>912.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEL (Kcal kg⁻¹)²</td>
<td>1531.0</td>
<td>1544.0</td>
<td>1527.0</td>
<td>1135.0</td>
<td>525.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²Trace minerals and vitamins (per kg): 150 mg of ZnSO₄H₂O, 80 mg of MnSO₄H₂O, 200 mg of MgO, 5 mg of CuSO₄H₂O, 1 mg of KIO₃, 5000 IU Vitamin A, 1000 IU Vitamin D and 20 IU Vitamin E; ÁDM, dry matter; OM, organic materials; CP, crude protein; EE, Ether extract; Cell, cellulose ADF, acid detergent-fibre; NDF, neutral detergent fibre; CA, crude ash. 3Obtained by calculation (NRC, 1975).

Table 3: The effects of Humic acid containing diets on live weight, DM intake, Somatic cell count and Total bacteria for goats

<table>
<thead>
<tr>
<th>Humic acid (g kg⁻¹ DM)</th>
<th>Diet</th>
<th>Control (T₁)</th>
<th>1 (T₂)</th>
<th>3 (T₃)</th>
<th>S.E.M²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live body weight (kg)</td>
<td>52.53</td>
<td>52.18</td>
<td>52.26</td>
<td>0.52</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Silage DMI (kg d⁻¹)²</td>
<td>0.387</td>
<td>0.394</td>
<td>0.405</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alfa hay DMI (kg d⁻¹)²</td>
<td>0.449</td>
<td>0.448</td>
<td>0.490</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concentrate DMI</td>
<td>0.903</td>
<td>0.900</td>
<td>0.901</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total DMI (kg d⁻¹)²</td>
<td>1.739</td>
<td>1.742</td>
<td>1.796</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

²Total DM intake values for goats were not added to pasture consumption; ÁDMI, dry matter intake; ÁSCC, somatic Cell Count; TB, Total Bacteria; ÁSEM=Standard error of the mean, NS, Not significant

parameters for the T₁, T₂ and T₃ diets were 257, 212 and 189 (x10³), respectively. There was no significant differences in the mean values of SCC in present study (P>0.05; Table 3). However, some studies have reported that HA supplementation significantly decreases the SCC in milk. Griban et al. (1988) reported that lower SCC in dairy cows was observed in HA group than in the control group. Thomassen et al. (2000) reported that 3 g HA kg⁻¹ decreased about 50% the SCC level of milk dairy. Similarly, Xiaowang et al. (2010) reported that lower SCC was observed by 40.09% in the fulvic acid group compared to the control group. Bacterial invasion occurs mostly during the dry period, particularly during late gestation, and leads to glandular damage in parenchymatous tissue. The glandular tissue damage leads to increased SCC and reduced milk production. The cellular presence in milk is one of the important protective mechanisms of the mammary gland (Sharma et al., 2011).

Comparing results of studies conducted by many researchers worldwide, performance differences due to HA supplementation might result from the compositional differences among the commercially available humate products (Kocabagli et al., 2002).

Total bacteria load in milk was decreased by HA supplementation but this decreasing in total bacteria did not non significant. In the present study, such reductions for total bacteria were determined as 84.8, 80.0 (x 10³) in treatment groups (T₂ and T₃ groups).

Conclusions

It has been determined that, there were no significant effects of diets containing humic acid on DM intake, SCC and total bacteria. In conclusion, administration of humic acid had a minor effect on somatic cell count and total bacteria. The authors wish to thank the American Journal Experts for English corrections.

REFERENCES

