Double Renal Artery in Baladi Rabbit

Reda Abd Allah Mohamed

Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef 62512, Egypt

ARTICLE INFO

Received: May 06, 2014
Revised: May 11, 2014
Accepted: May 16, 2014

Key words:
Accessory renal artery
Baladi rabbit
Kidney

*Corresponding Author
Reda Abd Allah Mohamed
kkidareda@yahoo.com

www.ijvets.com

INTRODUCTION

Rabbits have been used as urologic models in many studies, such as histotripsy (Styn et al., 2010), magnetic resonance imaging (Choo et al., 1997), radiofrequency ablation (Miao et al., 2001), lithotripsy (Fernandez et al., 2009) and partial nephrectomy (Tyritzis et al., 2007). Kidneys are paired structures located in the abdominal cavity. The kidneys of domestic animals are typically supplied by a pair of renal arteries from either side of the abdominal aorta (Dyce et al., 2002). In a study using dogs Sajjarengpong and Adirektaworn (2006) stated that double renal arteries could be found in both sexes, but only on the left side. Multiple renal arteries to each kidney were also found in some other species: man, cat, guinea pig (Shively, 1978) and mink (Wiland and Indykiewicz, 1999). Such variations in the renal arteries have surgical and radiological importance (Saritha et al., 2013). Thus the aim of this study was to describe the variations of the renal arteries as a first experimental study in Baladi rabbit to bring awareness to clinicians during removal, translocation or transplantation of the kidneys.

MATERIALS AND METHODS

The present investigation was carried out on a total of 10 adult apparently healthy Baladi rabbit of both sexes. The animals were collected from several farms at Beni-Suef Governorate. The rabbits were used immediately after slaughtering. Thorough washing was done with normal saline solution via the abdominal aorta. The arterial system was injected manually with gum milk latex colored red with carmine through the ascending aorta. Careful gross dissection of the abdominal aorta and renal arteries was performed after embedding in 10% formalin solution for 2-3 days. In 90% of the cases, each rabbit kidney was supplied by a corresponding single renal artery that arose from each side of the abdominal aorta. While in 10% of the cases, it was observed that the left renal artery was doubled; left renal and accessory left renal arteries. The accessory left renal artery is smaller than the main left renal artery and it originated from the abdominal aorta slightly caudal to the origin of the main artery.

RESULTS

Normally and in 90% of the cases, each rabbit kidney has only a single renal artery arising from each side of the abdominal aorta and entered it via its hilum. The right renal artery (Fig. 5/1) emerged from the abdominal aorta at the level of the cranial aspect of the 2nd lumbar vertebra slightly cranial to the left renal artery. The left renal artery (Figs. 1, 2/2) was seen arising from the abdominal aorta at the level of the 2nd lumbar vertebra nearly 1.5 cm far from the origin of the cranial mesenteric artery caudally and about 0.5 cm caudal to the origin of the right renal artery. The left renal artery was longer than the right renal artery.
In one case, there was an accessory left renal artery (Figs. 1,2/3) that arose from the abdominal aorta at the level of the 3rd lumbar vertebra and entered the kidney via its hilum. It was smaller than the main left renal artery. The distance between the origins of the accessory left renal and left renal arteries was 1.3 cm with the accessory one being caudal. Each of the right renal artery and the main left renal artery gave off cranial abdominal artery (Figs. 1/4, 1/6, 2/4) while, no extra branching was seen on the accessory left renal artery. The right kidney showed no vascular changes. The right and left kidneys of the rabbit did not show any gross abnormalities.

DISCUSSION

The current study showed that the renal arteries observed in this study originated from each side of the abdominal aorta, the finding which was in agreement with that described by Nickel et al. (1981) and Aksoy et al., (2004) in Tuj sheep. While, Ghoshal (1975) determined that their origins to be from the ventral surface of the aorta in ruminants.

The study under investigation showed that the left renal artery was longer than the right renal artery, confirming observations of Maženský et al. (2012) in New Zealand White rabbits, Aksoy and Ozudogru (2003) in Van cat, Ozudogru and Ozdemir (2005) in wolf, Nickel et al. (1979) in cattle. While Sajjarengpong and Adirektaworn (2006) in dog, Ozdemir et al. (2009) in Kangal dog, Aksoy et al., (2004) in Tuj sheep and Nickel et al. (1979) in horse, Paryani (2012) in one humped camel mentioned that the right renal artery was longer than the left one.

In this study, the incidence of double renal arteries was in 10% of the Baladi rabbits and they were only on the left side, which simulated that reported in 10% New Zealand White rabbits (Maženský et al., 2012), 2.63% in European rabbit (Nowicki et al., 2010), in a three old male cadaver cat (Pestana et al. 2011), one case in goat (Abidu-Figueiredo et al., 2009 and Olopade et al., 2010), 9.72% in dogs (Sajjarengpong and Adirektaworn, 2006) and 20.7% in mink (Wiland and Indykiewicz, 1999). While, Christensen (1952), Reis and Tepe (1956), Shively (1978) and Wiland and Indykiewicz (1999) found double renal arteries on the both sides, although they reported that the incidence of double renal arteries was more on the left side than on the right side. Gupta et al. (2011) stated that in 1.7% of humans there are three accessory renal arteries that are found on left side.

In the present work, the accessory left renal artery was smaller than the left renal artery, as shown by Olopade et al. (2010) in Nigerian goat.

In agreement with that recorded by Sajjarengpong and Adirektaworn (2006) in dogs, the present study stated that the double right renal artery in the rabbit was not present. While, Maženský et al. (2012) in New Zealand White rabbits stated that in one case, the accessory renal artery was recorded in the right kidney. Moreover Aksoy and Ozudogru (2003) in 16% of Van cats stated that there are two right renal arteries, the right dorsal and right ventral renal arteries arise from the ventral aspect of the abdominal aorta. Wiland and Indykiewicz (1999) in 20.0% of dogs and Kurtul et al. (2002) in a cadaver of the German shepherd dogs stated that right renal artery is doubled. Gupta et al. (2011) stated that in 1.7% of humans there are two accessory renal arteries are present on right side. Loukas et al. (2005) in a male human cadaver reported that there are three renal arteries observed on the right side, the authors added that on the right side, one accessory renal artery originated as a common trunk with the inferior mesenteric artery.

The obtained results were parallel to those described by Maženský et al. (2012) in New Zealand White rabbits and Nowicki et al. (2010) in European rabbit who mentioned that the cranial abdominal was a paired artery originating from right and left renal arteries.

Morphological variations observed here could have been linked to embryonic development (Noden and de Lahunta, 1985 as well as Sajjarengpong and Adirektaworn 2006) and we hypothesize that the presence of double renal arteries may be due to two events during development. Firstly, the lateral aortic branch does not degenerate and the renal artery develops from the lateral aortic branch. In the fetus, multiple lateral branches supply the mesonephros and as the mesonephros degenerates, the lateral aortic branch also degenerates. Secondly, the double renal arteries come from dorsal and
ventral branches which arise directly from abdominal aorta of double renal arteries. During embryonic development, the dorsal, lateral and ventral branches arise from the aorta. The renal artery develops from the lateral branch that is paired.

Conclusion
The presence of accessory renal arteries is an important anatomical feature which the surgeons should be aware of to avoid damage of these arteries during removal or translocation of the kidney and to evaluate the donor kidneys for possible renal transplantation, renovascular reconstruction and uroradiological procedures.

Acknowledgment
My prayerful thanks to ALLAH, The Most Beneficent, The Most Merciful, Who enabled me to complete my research work successfully.

REFERENCES
Nomina Anatomica Veterinaria, 2005. 5th edition, prepared by the international Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN) and authorized by the General Assembly of the World Association of Veterinary Anatomists (WAVA) Knoxville, TN (USA) 2003. Published by the Editorial Committee Hanover, Cloumbia, Gent, Sapporo.
