SHORT COMMUNICATION

Effect of Feeding Total Mixed Rations Supplemented With or Without Exogenous Fibrolytic Enzymes on Rumen Degradation Kinetics in Buffalo Bulls

K Rajamma1, D Srinivas Kumar2*, E Raghava Rao2 and D Narendra Nath3

1Department of Animal Nutrition, College of Veterinary science, Tirupati, AP, India
2Department of Animal Nutrition, NTR College of Veterinary science, Gannavaram, AP, India
3Department of Poultry Science, College of Veterinary science, Tirupati, AP, India

ARTICLE INFO

Received: July 05, 2014
Revised: September 15, 2014
Accepted: October 05, 2014

Key words:
Buffalo bulls
Degradation kinetics
Exogenous fibrolytic enzymes
Total mixed rations

ABSTRACT

The present study was carried out to determine the in situ degradation kinetics of total mixed rations supplemented with or without exogenous fibrolytic enzymes (EFE) using Nylon bag technique in bulls. Four dietary treatments viz., TMR with R: C ratio of 60: 40 (T1), T1 supplemented with exogenous fibrolytic enzymes (T2), TMR with R: C ratio of 70: 30 (T3) and T3 supplemented with exogenous fibrolytic enzymes (T4) were evaluated for their rumen degradable DM, CP, NDF and ADF using three buffalo bulls fitted with a permanent rumen fistula. In sacco study revealed that the effective degradability (ED) of DM, CP, NDF and ADF were higher (P<0.01) in TMR with R: C ratio of 60: 40 (T1) when compared to that with 70: 30 (T3). Furthermore, the % effective degradability of DM, CP, NDF and ADF increased (P<0.01) with the supplementation of EFE in TMRs irrespective of R: C ratio. It is therefore concluded that supplementation of EFE in TMRs has a positive effect irrespective of the R: C ratio as evidenced by their increased degradation rates in the rumen.

Cite This Article as: Rajamma K, DS Kumar, ER Rao and DN Nath, 2014. Effect of feeding total mixed rations supplemented with or without exogenous fibrolytic enzymes on rumen degradation kinetics in buffalo bulls. Inter J Vet Sci, 3(4): 236-239. www.ijvets.com

INTRODUCTION

Cereal crop residues form the main source of feed for ruminants especially during the dry season and winter. However, these crop residues are poor in nutritive value owing to their low energy and high fibre content. Improving the degradability of fibrous and non fibrous carbohydrates in the rumen is important for feed utilization in ruminants. Supplementing ruminant diets with feed enzymes to improve forage utilization has attracted growing attention (Beauchemin et al., 2003). The beneficial effects of fibrolytic enzymes in ruminant diets appear to be a result of improved feed intake (Krueger et al., 2008), which could be attributed to increased ruminal fibre digestion (Singh and Das, 2009). The use of fibrolytic enzymes as feed additives to improve degradation of fibre has been studied under in vitro (Bhasker et al., 2012), in sacco (Giraldo et al., 2008; Bassiouni et al., 2011) and in vivo (Gaafar et al., 2010) conditions, but the results are not consistent. Several factors such as enzyme doses (Colombatto et al., 2007) and type of diet (Pinos-Rodriguez et al., 2008) could affect the fibrolytic activity of exogenous enzymes. Indeed, the role of fibrolytic enzymes in increasing the degradation of substrates depends on the proportion of concentrates in the diet (Giraldo et al., 2008). Therefore, the objective of this study was to evaluate the effect of supplementation of exogenous fibrolytic enzymes in TMRs containing different roughage concentrate ratio on in sacco degradation kinetics in buffalo bulls.

MATERIALS AND METHODS

Preparation and analysis of samples

Maize stover procured locally, was ground in a hammer mill and used as roughage source. The four dietary treatments comprises of TMR’s containing two different roughage concentrate ratios supplemented with and without EFE viz., TMR with R: C ratio of 60: 40 (T1), T1 supplemented with EFE (T2), TMR containing R: C in 70: 30 ratio (T3) and T3 supplemented with EFE (T4). The ingredient composition of total mixed rations was presented in table 1. The exogenous fibrolytic enzyme (Fibrozyme; fermentation extracts of Aspergillus niger
and *Trichoderma viridae* containing cellulases and hemicellulases; 100 IU as xylanase/g) used in the present study were procured from M/s Alltech Inc., Nicholasville, USA. Samples of total mixed rations were then ground to pass through a 1 mm screen for nylon bag incubation. The samples were analyzed for proximate constituents (AOAC, 2007) and fibre fractions (Van Soest et al., 1991).

Feeding regimen

Three buffalo bulls fitted with a permanent plastic rumen fistula were used in the present study. The bulls were fed daily a basal diet comprising of 5 kg hybrid napier, 4 kg paddly straw and 1.5 kg concentrate mixture to meet the nutrient requirements for maintenance (ICAR, 1998). The bulls were housed in well ventilated and hygienic stalls with individual feeding and watering arrangements. All the animals were offered fresh, clean drinking water free of choice.

In situ degradation kinetics

The *in sacco* degradability of DM, CP, NDF and ADF of TMR's containing two different roughage concentrate ratios supplemented with and without exogenous fibrolytic enzyme were determined as per the procedure of Orskov and Mc Donald (1979). The bags with feed samples were incubated in the ventral sac of rumen of each bull for 0, 3, 6, 12, 24, 36, 48 and 72 h and were removed in a sequential method (Osuji et al., 1993). The bags containing samples of 0 h were washed without incubation in the rumen. After removal of bags from rumen they are placed in a bucket of cold water to stop ongoing microbial activity. Then bags were washed under slow running tap water by rubbing between fingers and the thumb finger for ten minutes, oven dried at 70°C for 48 h to a constant weight and DM loss during the incubation was calculated. The CP, NDF and ADF content in the residue was analyzed to determine their respective degradability’s. From the degradability data obtained at different intervals, the constant a, b and c were obtained from the expression.

\[
P = a + b \cdot (1 - e^{-ct})
\]

Where,

- \(P\) is percentage of degradability for response variables at \(t\);
- \(t\) is time relative to incubation (h);
- \(a\) is highly soluble or readily degradable fraction (%);
- \(b\) is insoluble and slowly degradable fraction (%);
- \(c\) is rate constant for degradation (h);
- \(e\) is 2.7182 (Natural logarithm base).

The effective nutrient degradability (%) of total mixed rations were calculated by time measurements and fitted values in NEWAY programme (Model based on Mc Donald, 1981) using a computer, assuming an outflow rate (K) of 0.05%/hr.

Statistical analysis

Data were analyzed statistically as per the procedures suggested by Snedecor and Cochran (1994) using SPSS version 17.0 (SPSS software products, USA) package. Group differences were compared using Duncan’s multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

The chemical composition of dietary treatments was presented in table 2 while the *in situ* degradation kinetics of DM, CP, NDF and ADF of total mixed rations containing different roughage concentrate ratios supplemented with and without EFE were shown in Table 3.

The *in sacco* DM degradability values revealed that the instantly soluble fraction ‘a’, slowly degradable fraction ‘b’, potential degradable fraction ‘a+b’ and rate constant ‘c’ were similar among the treatments. These results corroborated with the findings of earlier workers (Gallardo et al., 2010; Phakachoed et al., 2012). However, these results are contradictory to those of Pinos-Rodriguez et al. (2008) who reported improvement in potential disappearing fraction (b) and disappearance rate (c)/h by feeding EFE. Further, the present study indicated that supplementation of EFE increased (P<0.05) the EDDM (%) irrespective of the roughage: concentrate ratio. The increased EDDM (%) observed in enzyme treated total mixed rations might be due to increased enzyme activity in the rumen fluid. These results are very consistent with those reported earlier (Chopra et al., 2007; Giraldo et al., 2008; Bassiouni et al., 2011).

The *in sacco* CP degradability values revealed that the instantly soluble fraction ‘a’ was higher (P<0.01) in TMR containing R: C ratio of 60: 40 than TMR containing R: C ratio of 70: 30. The present study revealed that, supplementation of EFE increased (P<0.01) fraction ‘a’ in TMR containing R: C ratio of 70: 30 while there was no effect in TMR containing R: C ratio of 60: 40. Further, the slowly degradable fraction ‘b’, potential degradable fraction ‘a+b’ and rate constant ‘c’ were similar among the treatments. The present study also indicated that supplementation of EFE increased (P<0.01) the EDCP (%) irrespective of the roughage concentrate ratio. This may be attributed to the direct effect of the EFE that can randomly release reducing sugars and possibly make more nutrients available for utilization by the microorganisms (McAllister et al., 2001). Similar findings were also reported earlier (Gaafar et al., 2010; Jalilvand et al., 2008; Bassiouni et al., 2011).

The *in sacco* NDF degradability values revealed that the R: C ration had no effect on the instantly degradable fraction ‘a’. Further, supplementation of EFE had no effect on instantly degradable fraction ‘a’ irrespective of the R: C ration in the TMR. This is in line with the findings of earlier workers (Giraldo et al., 2008; Phakachoed et al., 2012). In the present study, the slowly degradable fraction ‘b’ was not affected by EFE supplementation. However, this is contradictory to the findings of previous reports (Giraldo et al., 2008; Pinos-Rodriguez et al., 2008; Phakachoed et al., 2012) who reported improvement in potential disappearing fraction (b) by feeding EFE. Moreover, it is observed that supplementation of EFE in TMR containing R: C ratio of 70: 30 had no effect on PD while it increased (P<0.05) the PD in TMR containing R: C ratio of 60: 40. However, supplementation of EFE increased (P<0.01) the EDNDF (%) irrespective of the roughage: concentrate ratio in the TMR. This may be the effect of EFE added to the TMRs which might have stimulated the proliferation of hemi-cellulose degrading bacteria in the rumen thereby leading to improved rate of NDF degradation in the rumen (Feng et al., 1996; Nsereko et al., 2002). These results corroborated with those reported earlier (Chopra et al., 2007; Giraldo et al., 2008).
The in sacco ADF degradability values revealed that the instantly soluble fraction ‘a’, slowly degradable fraction ‘b’, potential degradable fraction ‘a+b’ and rate constant ‘c’ were similar among the treatments. These results corroborated with the findings of earlier workers (Gallardo et al., 2010; Phakachoed et al., 2012). Further, the present study indicated that supplementation of EFE increased (P<0.05) the EDADF (%) irrespective of the roughage:concentrate ratio. This improved fibre digestion and increased rate of digestion may be due to the action of EFE possibly by enhancing attachment and colonization to the plant cell matrix by rumen microorganisms (Nsereko et al., 2000; Wang et al., 2001) and/or by synergism with enzymes in rumen fluid (Morgavi et al., 2000). These results are very consistent with those reported earlier (Chopra et al., 2007).

REFERENCES

Gallardo I, R Barcena, JM Pinos-Rodriguez, M Cobos, L Carreon and ME Ortega, 2010. Influence of exogenous fibrolytic enzymes on in sacco and in vitro