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ABSTRACT 
 

This study was undertaken to explain the variability in milk production and fertility traits of Holstein-Friesian cows by 

a reduced dimension using principle components analysis (PCA). A total of 3513 lactation records were analyzed 

covering the period from 2009 to 2017. The traits measured were; milk yield (MY), days in milk (DIM), days dry 

(DD), open days (OD), age at calving (AAC), calving interval (CI), services per conception (SPC), days in milk to 

first heat (DIMFH) and days in milk to first breed (DIMFB). Two datasets were used in this investigation, handling a 

number of the first lactation and pooled lactation traits. The sampling adequacy measures were verified, where the 

Kaiser-Meyer-Olkin (KMO) estimates were above 0.7, also the Bartlett's test denoted significant (P<0.01) outcomes. 

Three principle components were retained and rotated, elucidating 73% of traits variation. The first principle 

component (PC1) loaded heavily for MY, DIM, OD and SPC. PC2 had high loadings with DD, AAC and CI, while 

the third PC correlated mostly with DIMFH and DIMFB. The efficacy of PCA was confirmed by high communality 

estimates and the superiority of PC scores over original traits through stepwise regression analyses. These findings 
suggest that selection indices and breeding schemes for the current herd could be structured effectively using only 

three components instead of nine original traits, without significant loss of information. 
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INTRODUCTION 

 

Measuring phenotypic traits in dairy cattle herds is 

the substantial step for providing information about trait 

variations and efficiently planning selection programs. 

Breeding strategies that have been established on the basis 

of single-trait selection lead to misunderstanding of the 

actual herd performance with considering biological and 

genetic relationships between lactation and fertility traits 

(Rosario et al., 2008). Accordingly, the implementation of 

univariable statistical techniques had become 
disadvantageous and inappropriate to explain the maximal 

amount of variability in animal models. Alternatively, 

multivariate approaches have been recommended by 

previous literatures (Karacaoren and Kadarmideen 2008 

and Angelina et al., 2016) as more beneficial tools for 

analyzing dairy records. However, these multivariate 

methodologies constitute a problem represented in the 

inherent correlations that could be noticed among the 

investigated traits. In other words, most of multivariate 

models require the explanatory traits not to be highly 

correlated to minimize the potential occurrence of 

multicolinearity. Because most of multivariate methods 

are multiple regression based models, the existence of 

collinearity among the independent variables could lead 

us to violation of assumptions such as linearity, normality, 

homoscedasticity and independence of studied variables 

(Karacaoren and Kadarmideen 2008). Data dimension, 

which reflect the number of traits incorporated in the 

analytical models, have to take in consideration when 

dealing with multivariate animal models. Because animal 
breeding strategies and selection indices have frequently 

been constructed with big datasets, researchers may not 

able to determine the unnecessary traits, or could have 

traits that can explain little variability.  

Principle components analysis (PCA) is a data 

reduction multivariate approach that can be used to 

minimize a large number of variables into smaller sets. 

The main idea of this technique is to pick up the 

correlated variables together in the form of orthogonal or
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independent clusters or groups, called principle 

components (PCs). These PCs are linearly combined with 

the original data, and characterized by its ability to retain 

all information denoted by the observed and latent 

variables (Egenaet al., 2014). Therefore, this technique 

can overcome the collinearity problem by breaking the 

potential dependency among the observed variables. PCA 

has been approved by Taggar (2011) as a dimension 

reduction method, because it can be used to summarize 

the original data into uncorrelated principle components. 
The first few PCs elucidate the greatest amount of 

variation in the analyzed dataset. There have been a 

number of studies involving the use of PCA to analyze 

functional and economic traits of different dairy and beef 

cattle breeds. Most of the previous studies (Meyer, 2005; 

Savegnagoet al., 2011; Bignardiet al., 2012; Boligonet al., 

2013; Agudelo-Gomez et al., 2015) have been conducted 

to estimate genetic parameters for genetic improvement of 

dairy and beef cattle herds. In all previous investigations, 

PCA was proved to be beneficial for reduction of the 

original datasets, allowing reasonable estimates of genetic 
parameters. In term of accuracy, PCA was reported as a 

more effective methodology than the multiple regression 

models for early selection and prediction of milk 

production in Friesian breeds (Chakravarty et al., 1998). 

In this study, principle components analysis was 

applied in an attempt to reduce the data dimension of milk 

yield and fertility traits of Holstein-Friesian cows using 

first lactation and pooled lactation traits. In addition, this 

work was planned to use the multiple regression analysis 

to evaluate the accuracy of PCA, by modeling milk yield 

with the original traits and with principle component 

scores. 
 

MATERIALS AND METHODS 

 

Data source, herd management and measured traits  

Data of the present study were obtained from 3513 

lactation records related to Holstein-Friesian dairy cows 

stationed at Damietta Governorate of Egypt, over the 

period of 2009-2017. All over the year, all animals were 

raised either on dirty floor system in open yards or in 

partially protected open yards along with cool spraying 

system through hot conditions. The feed for cows 
contained 18 – 19 % crude protein according to the 

National Research Council. Cows were milked three times 

daily with 8 hours interval, using automatic milking 

systems in herringbone parlor. Computerized recording of 

data was carried out using different types of electronic 

systems such as Afikim and Dairy Comb 305. Heifers 

were artificially inseminated using frozen semen collected 

from Holstein bulls in Canada and U.S.A. based on the 

total predicted index (TPI). The present study was carried 

out using dataset of the first lactation (n=1963), another 

analysis was achieved using pooled lactations dataset, 

representing the first six lactations (n=3513). A number of 
milk yield and fertility traits were considered in this study; 

lactation milk yield (LMY), days in milk (DIM), number 

of dry days (DD), open days (OD), age at calving (AAC), 

calving interval (CI), services per conception (SPC), days 

in milk to first heat (DIMFH) and days in milk to first 

bred (DIMFB). Further analyses were undertaken using 

first lactation and pooled lactation datasets in an attempt 

to compare the results, which could be useful for breeding 

purposes. 

 

Principle components analysis 

Prior to statistical analyses of the current datasets 

using principle components analysis (PCA), data have 

been carefully checked for the existence of outliers, 

missing values and have also been tested for the normality 

assumption of multivariate methodology. Interestingly, 

the eligibility criteria required by PCA have been 
examined, particularly, the sampling adequacy and the 

correlation matrix of investigated traits. Kaiser-Meyer-

Olkin (KMO) sampling adequacy measure (Cerny and 

Kaiser, 1977) was computed to verify the relevance of the 

studied datasets to PCA. The KMO measured the 

magnitude of partial correlations among traits. The 

estimate of KMO ranged from 0 to 1 where value greater 

than or equal to 0.7 was considered good (Hutcheson and 

Sofroniou, 1999). In a similar manner, Eyduranet al. 

(2010) deemed the KMO above 0.6 was adequate for 

PCA. The KMO estimate of sampling adequacy was 
denoted by the formula: 
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Where Rij is the correlation matrix and Cij is the partial 

covariance matrix. 

The Bartlett's test of sphericity (Snedecor and 

Cochran, 1989), another overall measure of sampling 

adequacy, was applied to check the suitability of data to 

be reduced using PCA. This test compared the correlation 

matrix of measured traits with the matrix of zero 

correlations, which was known as the identity matrix to 

examine the overall relation among traits. In term of 

statistical inference, Bartlett's test of sphericity has been 
computed to test the null hypothesis that the correlation 

matrix wasn't diverge from the identity matrix (under Ho: 

traits are orthogonal). The PCA can perform a reduction 

of traits dimension without loss of information only if the 

null hypothesis was rejected (p<0.05). The Bartlett's test 

of sphericity, which follows a chi-square distribution with 

a [p (p-1) / 2] degree of freedom is given as:  
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Where p is the number of traits, n is the overall sample 

size, and |R| is the determinant of correlation matrix R. 

Moreover, the sampling sufficiency of every trait was 
identified using the partial correlations, namely, anti-

image correlations, which were originated from the R 

matrix. The multicolinearity among studied traits was 

detected by calculating the determinant scores of the 

correlation matrix. As a general rule, determinant scores 

greater than 0.00001 imply the absence of traits 

collinearity (Haitovsky, 1969; Field et al., 2012). 

        Understanding the investigation, PCA is a 

multivariate method used to explain the total variability in 

datasets by transforming a set of correlated traits, X1, X2, 

…, Xp into new orthogonal and uncorrelated variables 
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called principle components, PC1, PC2, …, PCp. The new 

extracted components, which are linear combination of 

the original observed traits, can be expressed in the 

following equations: 
 

PC1=a11X1 + a12X2 + … + a1pXp 

PC2=a21X1 + a22X2 + … + a2pXp     (3) 

PCp=ap1X1 + ap2X2 + … + appXp 
 

The general form of any extracted PCi can be written as 

follow: 

PCi=ai1X1 + ai2X2 + … + aipXp                 (4) 

 

        Where ai1, ai2, … aipare the component coefficients, 

or the loadings traits on each principle component, with 
i=1, 2, …, p. According to Everittet al. (2001), the first 

PC denotes the highest percentage of explained variability 

in datasets, followed by PC2 and then the other PCs. In 

this study, the extracted components have been rotated 

using varimax rotation with Kaiser Normalization. The 

eigenvalues of each component were estimated and 

arranged in descending order, revealing the proportions of 

variance in the original traits. The Communality (Cj
2) of 

each PC, which was estimated by summing the squared 

loadings of each component, is given as follows: 

 
Cj

2=ai1
2 + ai2

2 + … + aip
2                                                  (5) 

 

In the end, stepwise multiple regression analysis was 

carried out using the original traits as the explanatory 

variables in standardized form, and another analysis based 

on the principle component scores. In both analyses, 

coefficients of determination were evaluated and 

compared. All statistical analyses were performed using 

SPSS for windows (SPSS, 2007) and the PRINCOMP 

procedure of SAS version 9.2. (SAS institute, 2008). 

 
RESULTS AND DISCUSSION 

 

The preliminary results obtained from principle 
components analysis are summarized in Table 1. The data 

included means, standard deviations and coefficient of 

variations of the studied traits for both the first lactation 

and pooled lactations. The phenotypic means of studied 

traits in early lactation were 7521.1, 251.2, 67.3, 174.9, 

35.4, 462.2, 3.8, 50.3 and 71.3 for LMY, DIM, DD, OD, 

AAC, CI, SPC, DIMFH and DIMFB, respectively. The 

corresponding means of these traits for pooled lactations 

were similar to some extent to those of the first lactation. 

The relative standard deviations or coefficients of 

variation (ranged from 24.3 % to 85.3 %) revealed high 

variability for most of traits, both for animals in early 

stage of production and for accumulated lactations. The 

results in Table 1 indicate the importance of the studied 

traits in planning for dairy cattle breeding programs, 

starting from the early stage of milk yield. The correlation 

coefficients among milk yield traits and fertility traits are 

set out in Table 2. The data of the first lactation and 

pooled lactations revealed that LMY was positively 

correlated with all other traits, except for DD. The highest 
correlations (≥0.69) with LMY were recorded for DIM, 

OD and SPC. Out of the total existed 36 correlations for 

first lactation, there were 22 that were significant 

(P≤0.05). 

In term of the goodness of fit the principle 

components analysis to data of this study, Table 3 

illustrates the measures of sampling adequacy, sufficiency 

proof for the validity of PCA to the current datasets, along 

with multicolinearity diagnostics. Interestingly, the 

Kaiser-Meyer-Olkin (KMO) measures of sampling 

adequacy were 0.720 and 0.723, for the first lactation and 
pooled lactation traits, respectively. Comparatively, the 

current values of KMO were similar to the estimate (0.71) 

reported by Dhakal, (2017) and close to the value (0.75) 

of Vermaet al. (2015), higher than earlier estimate (0.60) 

of Tolenkhombaet al. (2013) in hill cattle, whereas in 

other studies (Pundiret al., 2011; Egenaet al., 2014), 

higher estimates of KMO (0.81) were recorded. The KMO 

estimates in this study indicated that PC methodology was 

appropriate for data reduction and the overall sample sizes 

were sufficient enough to get reliable estimates. The anti-

image partial correlations on the diagonal of correlation 

matrix (Table 2) were all greater than 0.5, suggesting the 
sampling adequacies (Dhakal, 2017) for each individual 

trait, being analyzed using either the first lactation or 

pooled lactation datasets. Moreover, the results of 

Bartlett's test of sphericity (Table 3) were highly 

significant for early lactation traits (chi-square=9962.2, 

P<0.001) and for pooled lactation traits (chi-

square=16888.65, P<0.001), providing more evidences for 

the validity of PCA. Accordingly, the results of Bartlett's 

test support the alternative hypothesis that the original 

correlation matrix is not an identity matrix, confirming the 

existence of relationships among traits. The results of 
determinant scores (0.01 and 0.008), as shown in Table 3, 

were greater than 0.00001, indicating the absence of traits 

multicolinearity (Field et al., 2012) for all analyzed 

datasets. Taken together, these results provide important 

proofs for the compatibility of PCA to the current dairy 

datasets. 

 

Table 1: Mean, standard deviation (SD) and coefficient of variation (C.V. %) for the first lactation and pooled lactations traits. 

Trait 
First lactation (n = 1963)  Pooled lactations (n = 3513) 

Mean SD C.V. %  Mean SD C.V. % 

Lactation milk yield (LMY, kg) 7521.1 4491.4 59.7  7602.9 4357.9 57.3 

Days in milk (DIM) 251.2 156.9 62.5  247.1 105.2 42.6 
Dry days (DD) 67.3 17.1 25.4  67.4 36.7 54.5 
Open days (OD) 174.9 135.4 77.4  172.4 94.6 54.8 
Age at calving (AAC, month) 35.4 16.1 45.5  48.3 24.9 51.6 
Calving interval (CI, days) 462.2 120.9 26.2  456.7 131.3 28.7 
Number of services per conception (SPC) 3.8 3.24 85.3  3.7 3.1 83.8 
Days in milk to first heat (DIMFH) 50.3 22.3 44.3  49.1 22.2 45.2 
Days in milk to first breed (DIMFB) 71.3 17.6 24.7  70.5 17.1 24.3 
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Table 2: Correlation coefficient between the first lactation traits (above diagonal), between pooled lactation traits (below diagonal), 

and anti-image correlations (on diagonal). 

Trait LMY DIM DD OD AAC CI SPC DIMFH DIMFB 

LMY 0.78(0.79) 0.90** - 0.03 0.82** 0.06** 0.03 0.69** 0.07** 0.14** 

DIM 0.88 0.76 (0.77) - 0.03 0.84** 0.01 - 0.02 0.69** 0.09** 0.16** 

DD - 0.03* - 0.03* 0.52 (0.49) - 0.03 0.22** 0.70** - 0.02 - 0.04* - 0.08** 

OD 0.79 0.83 - 0.02 0.79 (0.78) 0.02 0.03 0.80** 0.16** 0.21** 

AAC 0.06 0.02 0.06 0.05 0.66 (0.47) 0.31** 0.03 - 0.12** - 0.02 

CI 0.07 0.03* 0.70 0.08 0.12 0.51 (0.52) 0.02 0.04* - 0.02 
SPC 0.69 0.69 - 0.02 0.81 0.04 0.06 0.80 (0.79) 0.05** 0.02 
DIMFH 0.06 0.09 - 0.03* 0.15 - 0.08 0.06 0.03* 0.54 (0.52) 0.27** 

DIMFB 0.13 0.15 - 0.04* 0.21 0.02 0.02 0.02 0.28 0.53 (0.51) 

First lactation (n=1963) and pooled lactations (n = 3513); *Significant at 0.05 level (P<0.05); **Significant at 0.01 level (P<0.01). 

 
Table 3: Measures of sampling adequacy and suitability indices 
for principle components analysis (PCA) for the first and pooled 
lactations traits. 

Dataset Measures of sampling adequacy Statistics 

First 
lactation 
traits 

Kaiser-Meyer-Olkin measure of 
sampling adequacy 

0.720 

Bartlett's test of sphericity:   
          Chi-square statistics 9962.2 
Df 36 
          P value for significance 0.0001 

Determinant score  0.01 
Pooled 
lactation 
traits  

Kaiser-Meyer-Olkin measure of 
sampling adequacy 

0.723 

Bartlett's test of sphericity:   
          Chi-square statistics 16888.65 
Df 36 
          P value for significance 0.0001 
Determinant score  0.008 

 
The eigenvalue, percentage of variance accounted for 

by each PC and the accumulated proportions of explained 
variances are presented in Table 4. This table shows the 
initial solution for PCA, which have been conducted on 
the first lactation and the pooled lactation datasets. Nine 
PCs have been denoted for both datasets, explaining the 
total percentage of variability in the original nine traits. 
The eigenvalues along with the corresponding percentages 
of variances were ranked in descending order, starting 
from 3.429 (38.1 %) for the first PC to 0.089 (0.987 %) 
for the last PC of the first lactation dataset. Similarly, the 
eigenvalues and proportions of variances explained for 
pooled lactation traits were 3.41 (37.89 %) for the first PC 
and 0.105 (1.168 %) for the last PC. Table 5 provides the 
results denoted by PCA extraction and varimax 
orthogonal rotation for the first lactation traits. Kaiser 
Rule criterion (Johnson and Wichern, 1998) retained only 
three PCs that have eigenvalues greater than one. In 
addition, the result of scree plot (Figure 1) revealed the 
total number of components along with the considered 
PCs for data reduction. In other words, scree plot has been 
applied to portray the components having eigenvalues up 
to the bent of elbow (>1.0) to be retained. It was apparent 
from Table 4 that the first three principle components 
explained about 73 % of the total variation in milk yield 
and fertility traits of the first lactation. The first three PCs 
explained about 38 %, 21 % and 14 %, respectively, of 
total variability in data of the early stage of productive life 
of cows. Strictly speaking, the percentage of variance (73 
%) accounted for by extracted components regarded with 
the first lactation was acceptable. This is in agreement 
with Truxillo (2003) and Robin (2012) who stated that 
cumulative proportion of variance explained by most PCA 
was 70-80%.  

As shown in Table 5, the first PC had high positive 

loadings on LMY (0.929), DIM (0.933), OD (0.932) and 

SPC (0.868). The second PC had high positive 

correlations with DD (0.872), AAC (0.532) and CI 

(0.905), while the third PC was highly loaded with 

positive correlations on DIMFH (0.807) and DIMFB 

(0.755). The communalities of first lactation traits (Table 

5) were high and close to one, except for AAC (0.324). 

High communalities provide more credence to the 

effectiveness of PCA. According to Wuenseh (2012), 

communality is the coefficient of determination of the 

trait predicted from the PC. In similar studies (Yakubu et 

al., 2009; Ogah, 2011), high communalities have been 

estimated by the first PCs.  

Regarding PCA of pooled lactation traits, the 

extracted components, loading of each PC and 

communalities are presented in Table 6. Three PCs have 

been extracted with eigenvalues greater than one (Figure 

2), which jointly modeled about 71 % of total variation in 

the original dataset (Table 4). What was also important 

was that the three extracted components picked up the 

same traits as has occurred in the first lactation traits. The 

first component which modeled 37.88 % of variation had 

high positive loadings on LMY (0.921), DIM (0.928), OD 

(0.933) and SPC (0.873). PC2 which explained 19.17 % 

of lifetime variability loaded heavily on DD (0.910), AAC 

(0.221) and CI (0.921). The third PC was highly and 

positively correlated with DIMFH (0.806) and DIMFB 

(0.759). Moreover, the communalities of all traits were 

high, except for AAC. The results of communalities in 

this study are in accordance with Vermaet al. (2015) who 

reported that communality estimates ranged from 0.41 to 

0.88. The trend observed in the variability percentages 

explained by the rotated PCs came in agreement with 

most studies (Weigel and Rekaya, 2000; Kannan and 

Gandhi, 2004; Macciottaet al., 2006; Jaiswal et al., 2006; 

Haile et al., 2008; Angelina et al., 2016; Zefreheiet al., 

2016). Data from Table 6 can be compared with the data 

in Table 5 which suggest that the early lactation traits 

could be used effectively in predicting the lifetime 

performance of dairy cows, both in milk yield and fertility 

measures. The unique factor presented in both Tables 5 

and 6 denoted the unexplained variation revealed by each 

trait, which were all low, except for AAC. A similar study 

had been conducted by Angelina et al. (2016) who used 

PCA to reduce the datasets of milk production traits and 

reported that the original traits have been clustered into 

two components, explaining 89 % of the total variation in 

lactation traits.  
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Table 4: Initial eigenvalues, percentage of variance explained by each principle component (PC) along with the accumulated 

proportions of variances for the first and pooled lactations traits. 

Principle 
Component 

Using first lactation traits   Using pooled lactation traits  

Eigenvalue  Percentage of 
variance 

Accumulated 
percentages 

 
 

Eigenvalue  Percentage of 
variance 

Accumulated 
percentages 

PC1 3.429 38.101 38.101  3.410 37.888 37.888 
PC2 1.874 20.821 58.922  1.725 19.171 57.059 

PC3 1.246 13.841 72.764  1.268 14.093 71.152 
PC4 0.878 9.754 82.518  0.987 10.962 82.113 
PC5 0.696 7.735 90.253  0.712 7.915 90.028 
PC6 0.367 4.073 94.326  0.368 4.092 94.121 
PC7 0.287 3.184 97.510  0.283 3.141 97.261 
PC8 0.135 1.503 99.013  0.141 1.571 98.832 
PC9 0.089 0.987 100.00  0.105 1.168 100.00 

 

Table 5: Principle component loadings, communalities and uniqueness for the extracted and rotated PCs with the summary of the 
original traits (first lactation traits). 

Traits 
Extracted and rotated PCsa 

Communality Unique factor 
PC1 PC2 PC3 

LMY 0.929 0.023 0.055 0.867 0.133 
DIM 0.933 - 0.013 0.088 0.879 0.121 

DD - 0.047 0.872 0.010 0.762 0.238 
OD 0.932 0.016 0.161 0.895 0.105 
AAC 0.063 0.532 - 0.192 0.324 0.676 
CI - 0.003 0.905 0.097 0.828 0.172 
SPC 0.868 0.013 - 0.046 0.756 0.244 
DIMFH 0.040 - 0.027 0.807 0.654 0.346 
DIMFB 0.102 - 0.054 0.755 0.584 0.416 

a Extraction Method: Principle Component Analysis; a Rotation Method: Varimax with Kaiser Normalization. 

 
Table 6: Principle component loadings, communalities, uniqueness and the diagonal anti-image correlation for the extracted and 
rotated PCs with clustered traits (pooled lactations). 

Traits 
Extracted and rotated PCsa 

Communality Unique factor 
PC1 PC2 PC3 

MY 0.921 0.027 0.034 0.851 0.149 

DIM 0.928 0.001 0.070 0.866 0.134 
DP - 0.058 0.910 -0.030 0.833 0.167 
DO 0.933 0.039 0.138 0.892 0.102 
AAC 0.078 0.221 - 0.207 0.098 0.902 
CI 0.039 0.921 0.065 0.854 0.146 
SC 0.873 0.028 - 0.069 0.768 0.232 
DIMFH 0.044 0.016 0.806 0.652 0.348 
DIMFB 0.155 - 0.007 0.759 0.590 0.41 

aExtraction Method: Principle Component Analysis; aRotation Method: Varimax with Kaiser Normalization. 
 
Table 7:Stepwise regression for testing the relationship between milk yield and other traits using the original standardized traits of 
first lactation and pooled lactation traits. 

Model 

Model summary 

First lactation  Pooled lactations 

Predictor R2 SE F  Predictor   R2 SE F 

Using original traits (standardized) 
1 a 0.816 0.42 8678.4**  a 0.777 0.47 12255.8 
2 b 0.827 0.41 4670.1**  b 0.792 0.45 6671.9 
3 c 0.829 0.41 3173.5**  i 0.794 0.45 4513.2 
4 d 0.831 0.41 2402.5**  d 0.796 0.45 3414.8 
5 e 0.831 0.41 1928.1**  j 0.796 0.45 2741.3 

6 f 0.832 0.41 1611.1**  k 0.797 0.45 2299.5 
7 g 0.834 0.40 1402.5**  g 0.798 0.44 1980.2 
8 h 0.834 0.40 1505.23  l 0.725 0.43 1785.1 

Using principle component scores 
1 m 0.863 0.36 12385.9**  m 0.849 0.38 19729.3 
2 n 0.866 0.36 6349.9**  n 0.850 0.38 9949.4 
3 o 0.867 0.36 4250.1**  o 0.851 0.38 6668.9 

Model contents of explanatory traits beside the constant term:a. (DIM), b. (DIM, DO), c. (DIM, DO, AAC), d. (DIM, DO, AAC, SC), 

e. (DIM, DO, AAC, SC, DIMFH), f. (DIM, DO, AAC, SC, DIMFH, CI), g. (DIM, DO, AAC, SC, DIMFH, CI, DP), h. (DIM, DO, 
AAC, SC, DIMFH, CI, DP, DIMFB), i. (DIM, DO, SC), j. (DIM, DO, SC, AAC, CI), k. (DIM, DO, SC, AAC, CI, DP), l. (DIM, DO, 
AAC, SC, DIMFH, CI, DP, DIMFB), m. (first PC scores), n. (first PC scores, third PC scores), o. (first PC scores, second PC scores, 
third PC scores). 
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Fig. 1: Scree plot of principle components along with their 
eigenvalues for the first lactation traits. 

 

 
 
Fig. 2: Scree plot of principle components along with their 
eigenvalues for the pooled lactation traits. 

 

The results of stepwise multivariable regression 

analyses (Table 7) denoted the model accuracy regarding 

predicting LMY from the measurements of the original 
traits and from principle component scores, using all 

studied datasets. Overall, the percentage of explained 

variation in milk yield predicted from the first lactation 

traits was 83 %, while the lifetime traits explained about 

79 % of variability in LMY. On the other hand, an 

improvement was observed in the proportion of variance 

explained in models with PC scores. Modeling LMY with 

the first PC scores only accounted for 86.3 % of 

variability in MY in earlier stages of animal performance. 

Combination of component scores of PC1, PC2 and PC3 

in the model explained much more variability (>85 %) in 
MY than that done by the original traits, for first and 

pooled lactations. This finding agrees with those reported 

by Vaidya (2002) and Egenaet al. (2014) who revealed 

the effectiveness of PC scores in modeling the variability 

of body weight and milk yield as compared with using the 

original traits as predictors. The principle components are 

orthogonal, which implies the independency (zero 

correlations) between all PCs, hence, selection of animals 

on the basis of any PC does not affect the other. This 

might indicate the preference of PCA in constructing 

selection indices rather than using the original traits. This 

is because of the collinearity problem associated with 

incorporation of interdependent original measurements, 

which may lead to unstable and unreliable estimates of 

coefficients (Malau-Aduliet al., 2004).   

 

Conclusions 

The present study was undertaken to examine the 

appropriateness of principle components analysis in 

reducing the number of milk yield and fertility traits being 

used for breeding purposes of dairy cattle. This study has 
found that generally three PCs have been extracted from 

the first lactation and pooled lactation datasets, explaining 

most of variability originated from many correlated traits 

without missing information. The high loading denoted by 

the same traits on each PC along with high communality 

estimates suggested the possibility of selection of animals 

based on clustered traits rather than isolated traits. The 

results of this study also indicated that the first lactation 

traits could be used as a good indicator for the lifetime 

performance of dairy cows. These findings provide an 

enhancement in understanding and evaluating the total 
variability recorded in many functional traits of dairy 

animals, allowing for amenable reduction in the number 

of traits taken into account in selection index and breeding 

programs of Holstein dairy cows. 
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