Prevalence of Mange Infestation in Canines of Kathmandu Valley

Yugal Raj Bindari, Sulochana Shrestha and Mukti Narayan Shrestha

Himalayan College of Agricultural Sciences and Technology, Gatthaghar, Bhaktapur, Nepal

ARTICLE INFO

Received: August 31, 2012
Revised: September 01, 2012
Accepted: September 04, 2012

Key words: Mange, Owned dogs, Prevalence, Stray Dogs

A study on prevalence of mange infestation was conducted in canines of Kathmandu Valley. A total of 120 samples of suspected positive cases were taken from the dogs for study. Out of total the samples collected, 60 were from owned dogs (CVH-30, Mount Everest Kennel Club-22 and Veterinary Clinic-8) and 60 from stray dogs (KAT-30 and Animal Nepal-30). The result showed that 56% and 67% sample were positive for mites in owned and stray dogs respectively. Out of total positive samples, 68% were Demodex and 32% were Sarcoptes in case of owned dogs. Likewise, 70% were Demodex species and 30% were Sarcoptes species from the positive samples examined from stray dogs. Study on different breeds in case of owned dogs, Mongrel represents highest prevalence of mites 64%. Sex-wise prevalence showed the highest prevalence of mites in male representing 57%. Among different age groups, 3-6 yrs age were found to be more affected with 65 % followed by 9-12 years with 60%, 6-9 years with 57% and lastly 0-3years with 45%. Similarly, the study was also carried out among street dogs irrespective of age and breed. Sex-wise prevalence of mites showed the highest prevalence among females, representing 73%.

INTRODUCTION

Skin is the largest organ of the body and may represent 12-24% of an animal’s body weight. The skin and hair coat condition is used as an indicator of a dog’s general health, as smooth and glossy hair reflects healthy skin. The skin has many functions, including serving as an enclosing barrier and providing environmental protection, regulating temperature, producing pigments and vitamin D and sensory perception (Aiello, 2000).

The incidence of skin diseases in domestic animals is high. Most of the skin diseases are contagious, therefore prompt and accurate diagnosis is of vital importance in their treatment and control. Skin diseases fall into two main categories, namely; parasitic and non-parasitic diseases. The view of public health, parasitic diseases are important as a number of these diseases are transmissible to man (Boddie, 2000).

The incidence of skin diseases in domestic animals is high. Most of the skin diseases are contagious, therefore prompt and accurate diagnosis is of vital importance in their treatment and control. Skin diseases fall into two main categories, namely; parasitic and non-parasitic diseases. The view of public health, parasitic diseases are important as a number of these diseases are transmissible to man (Boddie, 2000).

Brushing or grooming is a must for dogs because it gives the dog a sense of well being. Besides, it helps in cleanliness, removal of ectoparasites, stimulates the sebaceous glands to produce secretion, accustom the dog to regular handling and prevents various skin affections e.g. matting of hairs and dermatoses (Chakrabarti, 2006).

Any laxity in the grooming and management of dogs often lead to serious ectoparasitic infestation like mites, ticks and lice. The dermatitis caused by ectoparasites is further exacerbated by bacterial and fungal infections if left uncared and under the unhygienic conditions. Mange is the most serious of all ectoparasitics (Sharma, 2006).

Mange is a non-descript term used to imply a condition caused by mites on or near the skin surface (Dan, 2007). Mites cause severe irritation with symptoms of inflammation, itching and hair loss. Mites cause damage by tunneling into the skin via hair follicles and oil glands of the epidermal layer. Once the dog begins scratching the purities, soreness and redness begin to develop leading to crusty skin and scabs (Kaliseh, 2007).

METHODOLOGY

Sites of study
1. Central veterinary Hospital (CVH), Tripureswor
2. Kathmandu Animal Treatment Center (KAT), Chapaligaun
3. Animal-Nepal, Chauvar
4. Mount Everest Kennel Club, Old Banehwor
5. Vet. Clinic, Pulchok, Krishnagalli
Study population

Study was carried out from 120 dogs selected randomly having dermatitis, hair loss, dandruff, sneezing, itching, scratching, crust, different patches on the body and ear wax etc. 60 samples were collected from CVH, Veterinary Clinic and Mount Everest Kennel Club whereas 60 samples from KAT and Animal-Nepal.

Division of samples

Samples were divided into 2 groups; Samples collected from CVH, HICAST, Veterinary Clinic and Mount Everest Kennel Club were regarded as samples from owned dogs and samples from KAT and Animal-Nepal were regarded as samples from stray dogs.

Sample size

A total of 120 samples (skin scraping-95, nasal swab-10, and ear canker-15) were collected on random basis.

Samples collection

Samples were collected in plastic bag from the infected animals. Those samples were examined in laboratory for mites.

Sites of examination

Samples were examined at Vet. Clinic, Pulchok, Krishnagalli and Himalayan College of Agriculture Science and Technology (HICAST) as per convenience.

Criteria for animal selection

For the purpose of study, the owned dogs were selected on the basis of dog’s history taken from owner and from the external examination of body condition. In case of stray dogs selection criteria were based only on external examination of body condition.

Chemicals used in laboratory

The KOH pellets marked by Nike Chemicals India were used for the preparation of KOH 10% solution. So, 10 g of KOH pellets were dissolved in distilled water in a volumetric flask to make a final volume of 100% KOH solution. Others materials like test-tubes, centrifuge, glass-slides, cover slips, hand lens, microscope etc. were used from Veterinary Clinic, Pulchok, HICAST, Gatthaghar as per convenience.

Method employed for the skin scrapplings to detect mites (Demodex, Sarcoptes, Cheyletielia)

The scrapplings were collected from the most affected part of the skin as there were more parasites on that part than in any other. Lesions on the skin were pressed with thumb and index finger of left hand and scraped the skin with right hand using glycerine dipped scalpel. The crusts of skin were scraped for several times in the same direction until blood oozes out. Samples were collected in plastic containers and the collected samples were examined in the laboratory for mites. Then the scrapplings were transferred in the test tube containing 10 % KOH and heated until hair and epidermal scale dissolved without any damage to the parasites on heating. It was allowed to cool for some time and then it was centrifuged for 5-10 minutes at 1500-2000 rpm. Supernatants were discarded and remaining sediments were transferred to slide and covered with a cover slip. The sediment was observed for mites under low power (10x) in a microscope and then at 40x for clarification of species of mites (Chauhan and Chandra, 2007). For cheyletielia, scales/scruffs were also combed out on a dark paper and the movements of mites were detected on the debris (Urquhart et al., 1987).

Method employed for ear mites

The deposits were taken from cotton swab and placed on the dark field background (dark surface/paper). Mites were seen by the help of hand lens as whitish moving specks. If necessary ear mites were transferred on a clean slide and a drop of oil was placed on it for microscopic examination. (Sloss et al., 1976).

Method employed for nasal mites

First of all, nasal sample was collected with the help of sterile nasal swab. It was then kept in the sterile vial and was transferred to a clean glass slide. Then, a drop of distilled water was added and finally examined under the microscope for identification of mites (Nasal Mites, 2010).

Data analysis

The data were collected from both primary and secondary sources. The collected data were analyzed statistically using Microsoft Excel Program. Descriptive statistics such as simple frequency, percentage and mean were used to analyze the data. Data were also presented in bar diagrams, in tables, graphs, pie charts to present in simplest form.

RESULTS AND DISCUSSION

Owned dogs

Total 60 samples from owned dogs were taken for study; CVH: 30 samples Vet. Clinic: 8 samples Mount Everest Kennel Club: 22 samples

Prevalence of positive and negative samples

Out of 60 samples examined, 34 samples were found positive in case of domesticated dogs representing the prevalence of 56% (Fig: 1). The present study showed that the mites are one of the important causative agents of the skin diseases in owned dogs of Kathmandu Valley. The finding of this study was slightly higher than 51% prevalence reported by Baidya (2006), and 44.41% and 46% recorded by Sah (2004) and Parajuli (2008), respectively. The higher prevalence rate obtained in this study might be due to the larger number of samples examined, lack of awareness in pet owners, frequent bathing of dogs with human soaps, lack of regular grooming, nutritional deficiency and indiscriminate use of immunosuppressive drugs.

Mites isolated in positive samples

Among 34 positive samples, 23 were Demodex and 11 Sarcoptes. The results showed that 68% Demodex species were isolated representing major mite infestation followed by Sarcoptes 32% (Fig: 2).
Based on mites isolated, present study showed prevalence of Demodex to be highest followed by Sarcoptes. Demodectic mites are the normal flora on the cutaneous surface of the dog but due to the immunosuppression and alteration of the normal physiology of thus skin, the problem of mange get enhanced. This might be the reason for finding higher Demodex in this study.

Sex wise representation of samples
Out of total 60 samples, 35 were from males and 25 from females. Out of 35 samples from male, 20 were found positive and 15 were negative. Out of 25 samples from females, 12 samples were found positive and 13 were negative (Fig: 3).

Breed wise representation of samples
Breeds were divided into 3 groups- Mongrel, Cross and Pure breed. 34 were from Pure breed group, 15 from Cross breed group and 11 from Mongrel. Out of 34 samples from pure breed group, 18 were found positive and 16 negative. Out of 15 samples from Cross breed group, 9 were found positive and 7 negative and out of 11 samples from Mongrel, 7 were found positive and rest negative (Fig: 5).

Breed wise representation of prevalence of mites-
Out of 3 breeds, Mongrel showed the highest prevalence of 64% affected followed by Cross 60% and Pure 53% (Fig: 6). Among breeds, Mongrels were found to be more affected followed by Cross and Pure breed group. This might be due to the management practice adopted for these pets as local breeds are not given good care and attention. They are mainly kept outside the house and are fed leftovers and there is also greater chance of coming in contact with street dogs.

Age wise representation of Positive and Negative sample
Animals were divided into 4 groups; 0-3 years, 3-6 years, 6-9 years and 9-12 years. From 0-3 years, 5 out of 13 samples were found positive followed by 3-6 years, 15 out of 23 samples were found positive. From 6-9 years, 11 out of 19 samples were found positive again followed by 9-12 age groups, 3 out of 5 samples were found positive (Fig: 7).

Age wise representation of prevalence of mites-
Among 4 age groups, 3-6 age groups were found to be more affected followed by 9-12 age groups, 6-9 age
higher immune suppression may be due to the larger number of samples taken from these age groups as larger number of cases between these age groups were brought to the hospital and clinics by the owners. Better care and attention were given to small size dogs so this might be the reason of least prevalence among these age groups as compared to others.

Stray dogs
Total 60 samples from stray dogs were taken for study
KAT: 30 samples
Animal-Nepal: 30 samples

Prevalence of positive and negative samples
Out of 60 samples examined, 40 samples were found positive representing the prevalence of positive sample 67%
(Fig. 9). The present study showed that mites are the major cause of skin disease in stray dogs of Kathmandu Valley. Lack of balanced diet, lack of deworming, direct contact with other mangy dogs, lack of grooming and bathing and even dirty environment might be the possible reason for high prevalence of mites in street dogs.

Mites isolated in positive samples
Among different types of mites the result showed that Demodex species were isolated 70% indicating the major mite infestation followed by Sarcoptes 30% (Fig. 10). Based on mites isolated from stray dogs, this study showed highest prevalence of Demodex followed by Sarcoptes species. Most of the street dogs are immunosuppressed; this might be the reason of finding higher Demodex in the study.

Sex wise representation of samples
Out of 33 samples from females, 24 were found positive and 9 negative. Out of 27 samples from males, 16 samples were found positive and 11 negative.

Comparison on prevalence of mites in owned and stray dogs
The above results showed that prevalence of mites is higher in stray dogs as compared to owned dogs. Owned dogs get proper care from their owner and live in a cleaner environment; get treatment and get more or less well nourished diet whereas stray dogs do not. This might be the cause for higher prevalence of mites in stray dogs. Moreover, stray dogs spend their time mostly in searching eatables in garbage's at filthy areas. Pet dogs are kept individually and usually not in close contact with mangy dogs so there is a lesser chance of transmission. This might be the reason of higher prevalence of mites in stray dogs.

Conclusion
The high occurrence of mites in skin scrapings concludes that the mite is one of the major contributing factors for skin diseases in dogs of Kathmandu Valley. The results showed that 67% and 56% samples were positive for mites in stray and owned dogs respectively. Thus, the higher prevalence of mites implies that health care, balanced food and management of the animal are not given consideration.
Of the total positive sample, 68% were Demodex and 32% were Sarcoptes species from the scrappings examined from owned dogs. Likewise 70% were Demodex and 30% Sarcoptes from the positive samples examined from stray dogs. Thus, on comparison between owned and stray dogs, it can be concluded that street dogs were having more skin disorders. Among mites, the Demodex were found to be more than the Sarcoptes species at both owned and stray dogs of Kathmandu valley. It causes a life threatening condition in dogs and results in great economic loss to the owners.

In the study among owned dogs, 3-6 age groups were found to be more affected than other age group. Among breed, Mongrel were found to be more affected. Similarly, male populations were found to be more affected than females. Whereas the study among stray dogs was carried out irrespective of age and breed as almost all of them were Mongrel and their ages were unknown. In the study among sex-wise prevalence, females represent the highest prevalence than the males.

Mange is a frustrating disease to the animal owners as it involves more time and economic expenditure. Hence, appropriate measures should be adopted. Any skin problem especially persistent skin irritation should always be watched carefully and be treated after proper diagnosis only.

Other mites (Cheyletiella, Pneumonyssoides caninum and Otodectic cyanotis) were found to be negative throughout the collected samples. The literature relating to their prevalent in Nepal was also not found.

REFERENCES


