Hepatoprotective Effect of *Terminalia Chebula* on Gentamicin Induced Toxicity in Rats

S. Sivachandran and P. Hariharan*

Department of Veterinary Pharmacology and Toxicology, Madras Veterinary College, Chennai-600 007, India

RESEARCH ARTICLE

ARTICLE INFO

Received: September 13, 2012
Revised: September 14, 2012
Accepted: September 15, 2012

Key words:
Gentamicin induced, hepatotoxicity, Protective effect, *Terminalia chebula*

Corresponding Author
P. Hariharan
pharipharma123@gmail.com

INTRODUCTION

Gentamicin, an aminoglycoside is one of the most widely used antibiotics in veterinary practice. The clinical use of aminoglycosides may be limited by the development of toxic side effects such as hepatotoxicity, nephrotoxicity, otoxicity, etc. To maintain the clinical utility of this important group of compounds, various authors have attempted co-treatment with some plant extracts which might ameliorate gentamicin induced toxicity. In the present study we have focused on the alleviatory effect of *Terminalia chebula* on the hepatic damage induced by gentamicin. Parameters like ALT, AST, total protein, and albumin were monitored to study the liver damage and to understand the possible protective effects of *Terminalia chebula*.

MATERIALS AND METHODS

Inbred male albino rats of Wistar strain weighing 120-150 g were obtained from Laboratory Animal Medicine, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai – 600 051, Tamil Nadu, India. They were housed in cages, acclimatized to the standard laboratory conditions and were fed with standard dry pellet feed and provided drinking water *ad libitum*.

RESULTS

Hepatoprotective activity of *Terminalia chebula* in gentamicin induced toxicity model was tested at two different dose levels viz., 125 and 250 mg/kg of body

ABSTRACT

A study was carried out to analyze the hepatotoxicity induced by administration of gentamicin by analyzing liver specific parameters like alanine amino transferase, aspartate amino transferase, superoxide dismutase, blood urea nitrogen and creatinine in rats and to confirm the same by histopathological examination. An attempt was also made to study the possible hepatoprotective effect of *Terminalia chebula* on gentamicin induced toxicity and compare the same with that of silymarin. The results of this study showed that gentamicin administered at a dosage of 80 mg/kg b.wt. i/p once daily for seven days produced significant elevation of serum biochemical parameters like ALT, AST with significant reduction in the level of total protein and albumin. Administration of aqueous extract of *Terminalia chebula* significantly restored these parameters. The results of the present study have suggested that *Terminalia chebula* plant extracts can be used as a protective agent in gentamicin induced hepatotoxicity.
Gentamicin at a dose rate of 40 mg/kg to rabbits for a period of five days increased the levels of ALT compared to control group. The increase could be attributed to gentamicin which was able to cause specific hepatic injury during the treatment period.

In *Terminalia chebula* treated group, the enzyme level showed a significant decrease. The stabilization of these enzyme levels by the crude extract of *Terminalia chebula* and the standard drug silymarin indicated the improvement of functional status of liver. Manna *et al.* (2006) reported that administration of *Terminalia arjuna* aqueous extract successfully restored the alterations of ALT level caused by CCl₄ administration.

The AST is found in sufficient concentration in liver, kidney and other tissues and considered useful to evaluate in hepatocellular injury (Turk and Casteel, 1997). In our study, gentamicin treated group showed a significant increase in the AST level when compared to control. *Terminalia chebula* treated groups produced a significant moderate reduction in AST level. However silymarin produced a higher reduction in AST level. Garg *et al.* (1996) reported that administration of gentamicin at a dose rate of 40 mg/kg to rabbits for a period of five days increased the levels of AST compared to control group.

The present study showed significant reduction of total protein in gentamicin group when compared to the control. Extracts of *Terminalia chebula* and silymarin-treated groups showed significant increase in total protein level when compared to gentamicin treated group. There was a significant (P<0.05) reduction of serum albumin observed in gentamicin treated group (3.27 ± 0.06) when compared to normal (4.86 ± 0.14). Though the extract of *Terminalia chebula* at both dose levels had revealed significant (P <0.05) rise in albumin compared to gentamicin group, silymarin treated group (4.76 ± 0.15) brought the albumin to near control levels (Table-1).

DISCUSSION

One of the most sensitive and dramatic indicators of hepatocyte injury is the release of intracellular enzymes such as ALT and AST in the circulation. During hepatic damage, these transaminases present in the liver cells leak into the serum, resulting in increased concentrations. The elevated activities of these enzymes are indicative of cellular leakage and loss of the functional integrity of the cell membranes in liver (Rajesh and Latha, 2004). The measurement of ALT is a sensitive and valuable indicator of hepatic injury since the enzyme activity is confined to the cytoplasm of liver (Loeb, 1997).

In the present study, the ALT level was significantly increased in gentamicin group when compared to control group. Garg *et al.* (1996) reported that administration of gentamicin at a dose rate of 40 mg/kg to rabbits for a
REFERENCES

